AD~A096 856 CALIFORNIA UNIV BERKELEY DEPT OF MECHANICAL ENGINEERING F/¢ 20/1%
FINITE DEFORMATION OF ELASTIC RODS AND SHELLS, (V)
SEP 80 P M NAGHDI NODOI'J-?S-C-OI'QB
UNCLASSIFIED UCB/MI-BO-'I




% i M :
i . T nrq._vnyw-ww‘im‘m

R ! L FI
UNCLASS IFIED } o '
SECURITY CLASSIFICATION OF THIS PAGE (When Dote Fotefl) %
) 4 ; READ INSTRUCTIONS
REPORT DOCUMENTATION PA “ § BEFORE COMPLETING 1 ORM
J]om RY NUMGER 2. GOVT ACCESSION NO.[ 3. RECIPIENT'S CATALOG NUMBLR ‘;\V)
( / ;[ggéﬁn 80-7 /
3 and Subtifle) e 5., % WMO

, ’ é YFinite Deformation of Elastic Rods (7 Technical cp-t, \
| and Sheus:—<—- sr s . |

{
A}
i/ 6. PERFORMING ORG. REPORT NUMBER
. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)
— - ..--m—-u) /-4>-.
Ne®) 1 |O)p. M ) dghd] (/5’ ? ymy‘m 75-C- yux
h-(j 9. PERFORMING ORGANIZATION NAME AND ADODRESS 10. PROGRAM ELEMENTY, PROJECT, TASK
. X . AREA & WORK UNIT NUMBERS
CKD Department of Mechanical Engineering ’ v e
. . Te . ’
University of California NR 064-436 ;2/}492{ .

L. P

N Berkeley, CA 94720 K{ > !

@ 1. CONTROLLING OFFICE NAME AND ADDRESS ) ‘ZW
“ ' Structural Mechanics Branch Al Sep 8 i

c Office of Naval Research \7 13. Nume ES:

Arlington, VA 22217 : 83

< 14. MONITORING AGENCY NAME & ADDRESS(/ diflerent [rom Controlling Olfice) 15. SECURITY CL ASS. (of this report)
' 3
, Unclassified

q: 1Sa, DECL ASSIFICATION/DOYNGRADING 4

SCHEDULE

’ 3

{ 16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the sbatract enfered (n Block 20, if diflerent trom Report)

. SUPPLEMENTARY NOTES Y

)

19. KEY WORDS (Continue on reverae side if neceseary and identily by block number)

" Finite deformation, elastic solids, shells, rods, direct approach,
constrained theories.

20. ABSTRACT (Continue on reverse side If necessary and Identily by block number)

The objective of this paper is to present an account of recent developments
in the direct formulation of theories of rods and shells based on 1 and
-dimensional continuum models originating in the works of Duhem and
E. and F. Cosscrat. TFollowing some preliminaries and description of
(3-dimensional) shell-like and rod-like bodics, the rest of the paper is
arranged in two parts, namely Part A (for shells) and Part B (for rods)
{(cont inucd)

DD ({355 173 eoimon or 1 Novesis ousoLete UNCLASSTIFTED ‘/00 5/-;6

S/N 0102-014-6601 )
SECURITY CLASSIFICATION OF THIS PAGC (When Dere b’n“vo.h

LY 813250054

DTIC FILE COPY




UNCLASSIFIED

S LURITY CLASSIFICATION OF THIS PAGE(Whan Date Entaced)

20. Abstract (continued)

and can be read independently of each other. In each part, after providing
the main ingredients of the direct mode! and a statement of the conserva-
tion laws, a rapid outline is given of the derivation of the basic
equations and nonlinear constitutive equations for elastic materials.

1 Each part also includes a discussion of constrained theories and an

account of recent developments on the subject.

[ U T Ui .

UNCLASSIFILED
SECURITY CLASSIFICATION OF THIS PAGE(When Nete Lntered)




T Y~

R R

Finite Deformation of Elastic Rods and Shells

by

P. M. Naghdi
Department of Mechanical Engineering
University of California, Berkeley

Abstract

The objective of this paper is to present an account of recent deveclop-
ments in the direct formulation of theories of rods and shells based on
1 and 2-dimensional continuum models originating in the works of Duhem and
E. and F. Cosserat. Following some preliminaries and description of
(3-dimensional) shell-like and rod-like bodies, the rest of the paper is
arranged in two parts, namely Part A (for shells) and Part B (for rods)
and can be read independently of each other. In each part, after providing
the main ingredients of the direct model and a statement of the conservation
laws, a rapid outline is given of the derivation of the basic equations and
nonlinear constitutive equations for elastic materials. Each part also
includes a discussion of constrained theories and an account of rccent
developments on the subject.
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1. Introduction

Rods and shells are a class of 3-dimensional bodies whose boundary
surfaces have special characteristic features. 1In general, two entirely
different approaches may be adopted for the construction of l-dimensional

and 2-dimensional mechanical theories of rods and shells and similarly thesc

' two approaches may be used in the construction of theories of fluid jets and i

fluid sheets. One approach starts with the 3-dimensional equations of the

strives to obtain 1-dimensional (in the case of rods and jets) and 2-

Ak

] i
N ]
’ classical continuum mechanics and by applying approximation procedurcs }

i

dimensional (in the case of shells and sheets) field equations and

A

constitutive equations for the medium under consideration. In the other

approach, the medium response is modelled as a l-dimensional and a 2-

...ﬁ—
s

dimensional directed continuum, called a Cosserat curve and a Cosserat

surface, respectively; and one then proceeds to the development of the field
equations and the appropriate constitutive equations*. If full information :
is desired regarding the motion and deformation of the continuum under ;
study in the context of the classical 3-dimensional theory, then there would
be no need to develop a particular l-dimensional and a 2-dimensional thecory.

In fact, the aim of 1-dimensional and 2-dimensional theories of the type

mentioned above is to provide only partial information in some sense: for

example, in the case of shells information concerning quantities which can

! be regarded as representing the medium response confined to a surface or

1 : .
; its neighborhood as a consequence of the (3-dimensional) motion of the body,
9
P or the determination of certain weighted averages of quantities resulting
; from the (3-dimensional) motion of the body.
B

*
. Other 2-dimensional and 1-dimensional models may also be used to construct
4 dircct theories of shells and rods but we postpone further remarks on

this until lJater in this section.
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The nature of the difficulties in the development of both the theory
of shells and the theory of rods from the full 3-dimensional equations is
well known and has been elaborated upon in various contexts by Green, Laws
and Naghdi (1968), Green and Naghdi (1970), Naghdi (1972, Secs. 1,4; 1974;
1979a) and Ericksen (1979). In view of these it is reasonable to attempt
to formulate l-dimensional and 2-dimensional theories of the types described
above by replacing the continuum characterizing the (3-dimensional) medium
in question with an alternative model which would reflect the main features
of the response of the 3-dimensional medium and which would then permit the

formulation of appropriate l-dimensional and 2-dimensional theories by a

direct approach and without the appeal to special assumptions or approxima-

tions generally employed in the derivation from the 3-dimensional equations.
It should be emphasized that a Cosserat surface and a Cosserat curve are
not, respectively, just a 2-dimensional surface and a l-dimensional curve;
but are, in fact, endowed with some structure in the form of additional
primitive kinematical vector fields.

The concept of 'directed' or 'oriented' media originated in the work
of Duhem (1893) and a first systematic development of theories of oriented
media in one, two and three dimensions was carried out by E. and F. Cosscrat
(1909). 1In their work, the Cosserats represented the orientation of each
point of their continuum by a set of mutually perpendicular rigid vectors.
The purely kinematical aspects of oriented bodies characterized by ordinary
displacement and the independent deformation of N deformable vectors in
N-dimensional space has been discussed by Ericksen and Truesdell (1958), who
also introduced the terminology of directors.

A complete general theory of a Cosserat surface with a single deformable
director given by Green, Naghdi and Wainwright (1965) was developed within

the framework of thermomechanics. This derivation (Green ct al. 1965) is




EXE

—ar gy TEes

.
Xie

-~ e

2 e s
¥ .

carried out mainly from an appropriate energy equation, together with
invariance requirements under superposed rigid body motions. A related
development utilizing three directors at each point of the surface, in the
context of a purely mechanical theory and with the use of a virtual work
principle, is given by Cohen and DeSilva (1966b). A further development
of the basic theory of a Cosserat surface along with certain general
considerations regarding the construction of nonlinear constitutive equa-
tions for elastic shells is given by Naghdi (1972, Sec. 8), which also
contains additional historical remarks relevant to oriented continua and
to the theory of thin elastic shells. Hierarchical theory of Cosserat
surfaces, namely that comprising a material su-face with K (21) directors,
is contained in a paper by Green and Naghdi (1976a) which deals with fluid
sheets and its application to water waves.

A parallel development in the theory of a Cosserat curve with two
deformable directors begins with a paper of Green and Laws (1966) whose
derivation is carried out mainly from an appropriate energy equation,
together with invariance requirements under superposed rigid body motions.
A related development of a directed curve with three deformable directors
at each point of the curve, in the context of a purely mechanical thcory
and with the use of a virtual work principle, is given by Cohen (1966). A
further development of the basic theory of a Cosserat curve along with
certain general developments regarding the construction of nonlinear
constitutive equations for elastic rods is given by Green, Naghdi and
Wenner (1974b). Hierarchical theory of Cosserat curves, namely that
comprising a material curve with L(#22) directors, is contained in a paper
by Naghdi (1979b) which is concerned with applications to Newtonian and
non-Newtonian flows in pipes.

Of course, the introduction of an alternative model and formulation of




l1-dimensional and 2-dimensional theories by the direct approach do not mean
that one ignores the nature of the field equations in the 3-dimensional
thecry. In fact, some of the developments of the field equations by direcct
procedure are materially aided or influenced by available information which
can be obtained from the 3-dimensional theory. For example, the integrated
cquations of motion from the 3-dimensional equations provide guidelines
for a statement of 1- and 2-dimensional conservation laws in conjunction
with the 1- and 2-dimensional models, and also provide some insight into
the nature of inertia terms and the kinetic energy in the direct formula-
tion of the l-dimensional and 2-dimensional theories.

Inasmuch as most of the difficulties associated with the derivation
of the l-dimensional and 2-dimensional theories from the 3-dimensional cqua-
tions occur in the construction of the constitutive cquations, it is in fact
here that the direct approach offers a great deal of appeal. These con-
structions, as well as the entire development by the direct approach, are
exact in the sense that they rest on (l-dimensional and 2-dimensional)
postulates valid for nonlinear behavior of materials but clearly they cannot
be expected to represent all the features that could only be predicted hy
the relevant full 3-dimensional equations. Theories constructed via a
direct approach necessarily satisfy the requirements of invariance under
superposed rigid body motions that arise from physical considerations and,
of course, they are also consistent and fully invariant in the mathematical
sense. Moreover, the development by the direct approach is conceptually
simple and does not have the difficulties associated with approximations
usually made in the development of the theory of thin shells or the theories
of slender rods from their corresponding 3-dimensional equations.

Although the direct approach to shells and rods employed in this paper

is based on the 2-dimensional and l-dimensional directed continuum model s,
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respectively, other direct 2-dimensional and l-dimensional models may also
be used to construct theories of shells and rods. For example in the

case of shells, instead of developing a theory based on a Cosserat surface,
we may consider only a material surface and construct a direct theory in
which the basic kinematical ingredients are the position vector of the
surface together with its first and second gradients. A theory of this
kind has been discussed by Balaban, Green and Naghdi (1967) and a somewhat
less general theory by Cohen and DeSilva (1966a,1968). Although these
developments have some overiapping features with corresponding resuits in
the theory of Cosserat surfaces, they are more restrictive. Additional
related remarks are made in Sec. 6 of this paper.

Following some general background information and definitions of
shell-1like and rod-like bodies in Sec. 2, the remainc2r of the paper is
arranged in two parts which can be read independently of each other: one
part (Part A) is concerned with the theory of shells and the other (Part B)
is devoted to the theory of rods. In Part A (Secs. 3-8), first a concise
development of the basic theory of a Cosserat surface with a single director
followed by its generalization is presented. For a Cosserat surface with a
single director, constitutive equations are discussed in the context of finite
deformation of elastic shells and a procedure is indicated for identification
of the assigned fields and the inertia coefficients which occur in the basic
theory. Next, a fairly detailed account of constrained theories of shells is
presented which includes the construction of an interesting nonlinear con-
strained theory not discussed previously in the literature. This is followed
by an account of recent developments pertaining to elastic shells and a
representation of the basic equations of a Cosserat surface in direct

(coordinate-free) notation. A table of contents for Part A is listed in

the introductory paragraph of Sec. 3.




Similarly, in Part B (Secs. 9-13), first a concise development of the
Cosserat curve with two directors and its generalization is presented.

Next, with reference to a Cosserat curve with two directors, constitutive

equations are discussed for finite deformation of elastic rods and a

procedure is indicated for identification of the assigned fields and the

inertia coefficients which occur in the basic theory. This is followed

by some additional remarks pertaining to elastic rods, together with a

.

brief discussion of the constrained theories of rods, and a representation

of the basic equations for a Cosserat curve in direct (coordinate-free)

[

notation. A table of contents for Part B is listed in the introductory

paragraph of Sec. 9.

j
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In this section, we provide appropriate definitions for shell-like and
rod-like bodies. To this end, consider a finite three-dimensional body 9

in a Euclidean 3-space, and let convected (or Lagrangian) coordinates e

'1 2. General Background
1

(1=1,2,3), be assigned to each particle (or material po’nt) of 4. Further,

l +  *
! , let' r be the position vector, from a fixed origin, of a typical particle

~

of B in the present configuration at time t. Then, a motion of the (three-
ok )
{ dimensional) body is defined by a vector-valued function r which assigns

!
*

f position r to each particle of # at each instant of time, i.e.g,

%
* ok 3
| r o= eh,0%,6%,0) . (2.1)
~x
We assume that the vector function r --a l-parameter family of configura-

tions with t as the real parameter -- is sufficiently smooth in the sense that
‘ Cs . . . i . .
! ' it is differentiable with respect to 8" and t as many times as required. In

some developments, it is convenient to set 93==E and adopt the notation

ol = (0%,8) , 65 =¢ . (2.2)

We recall the formulas

i 3
3 t «g,l = ;i ’ gij = gi * gj ’ g = det (gij) ’
39 (2.3)
o i i 1) i Jo_ 13
cg. =6 - ., gtegl = ,
'J g gJ j °? g g g) g g &
. 1
| dv = g'delde’de’ (2.4)

TLThe use of an asterisk attached to various symbols is for later convenience.
The corresponding symbols without the asterisks are reserved for different
definitions or designations to be introduced later.

Recall that when the particles of a continuum are referred to a convected
coordinate system, the numerical values of the coordinates associated with
cach particle remain the same for all time.
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and further assume that+

L

g = [g)8,835] > 0

i . .
In (2.4), g; and g~ are the covariant and the contravariant base vectors at

time t, respectively, gij is the metric tensor, g1J is i1ts conjugate, 63

is the Kronecker symbol in 3-space and dv the volume element in the present
configuration.
*

The velocity vector v of a particle of the three-dimensional body in

the present configuration is defined by

where a superposed dot denotes material time differentiation with respect

to t holding 6' fixed. The stress vector t across a surface in the present

*
configuration with outward unit normal v is given by

i
T . ,

oL * ik B -hi _ _ik

EEVy e VT og s T=g,®@e T =179, ®g
4

where
i3 1 : * * *
Tl=g2Tngj g/zT;‘J oY =\)11=\’ 181 ot =gler g

where T is the symmetric Cauchy stress tensor, Tik its contravariant com-
ponents and ® denotes the tensor product of two vectors. In terms of
quantities defined in (2.5)-(2.8), the local field equations which follow
from the integral forms of the three-dimensional conservation laws for

mass, linear momentum and moment of momentum, respectively, are

+

The choice of positive sign in (2.5) is for definiteness. Al}ernatively,
for physically possible motions we only need to assume that gZ#0 with
the understanding that in any given motion [gygrg3] is either>0 or<o0.
The condition (2.5) also requires that 6! be a right-handed coordinate

svstem.

(2.06)

2.8)




(2.9)

*

X
*

i

[N

! T
! g =Pev .ol =0,

*
T i-+p f

3

* J
where p 1s the 3-dimensional mass density, f is the body force field per
unit mass and a comma denotes partial differentiation with respect to 6'. For
later reference, we note that for an incompressible medium, the condition of

incompressibility may be expressed as

*

e

g° =0 or div v o= o . (2.10)
A material surface in B can be defined by the equation E:=€(Hu); the

equation resulting from (2.1) with €==€(9a) represents the parametric form of

this material surface in the current configuration and defines a l-parameter

family of surfaces in space, each of which we assume to be smooth and non-

intersecting. We refer to the surface £=0 in the current configuration hy s.

Any point of the surface s is specified by the position vector r, relative to
*
the same fixed origin to which r is referred, where
A g a
r=r06%t) =r (6%,0,0) . (2.11)

Let a_ denote the base vectors along the 6%-curves on the surface s. By

(2.11) and (2.3),, ~
! 3
= Y = —= = Y (2.12 J
3 ga(e ') 360 ga(e 0,8) (.12
* %
and the unit normal az= a%(eY,t) to s may be defined by
- —_ - 3 o]
3,783;=0 , agea; =1, 3;=3a [33,3,] >0 . (2.13)
We also recall the formulas .
aaB = §a . ?‘,B , a = det(aaB) . G ;
I aaﬁa 2% 'aB - aaB R SRS T 3
~ ~B T~ - > c v8 B |
and
Pag = Pga T3, " 338 % 3338 > 5o
< = 5 & = - Y = T
Zalg T bygd3 33 a bagy g baB]y bale ’
* *
The use of the same symbols for base vectors of a surface in (2.12)-(2.13)
and for the triad of a space curve in (2.17)-(2.18) should not give risc to

confusion. The main developments for shells and rods are dealt with
separately in the rest of the paper; this permits the use of the same symbol
for different quantities in the case of shells and rods without confusion.

9.




o .
where a denote the reciprocal base vectors of the surface s, a

and baB are

ap
the components of its first and second fundamental forms, a comma denotes partial
differentiation with respect to the surface coordinates GY, a vertical bar stands
for covariant differentiation with respect to a_, and §% is the Kronecker symbol

aB B

in 2-space.

A material line (not necessarily a straight line) in 8 can be defined by
the equations 60==6a(£); the equation resulting from (2.1) with 6a==6a(£) repre- '
sents the parametric form of this material line in the current configuration
and defines a l-parameter family of curves in space, each of which we assume to
he smooth and nonintersecting. We refer to the space curve 8% =0 in the current
configuration by ¢. Any point of this curve is specified by the position vector
r, relative to the same fixed origin to which f* is referved, where
r=T(E,t) = T (0,0,6,8) . (2.16) ,

Let ag denote the tangent vector alonggthe g—curve§ By (2.16) and (2.3)1,

ag = 33(£,t) = 5§~= §3(0,0,€,t) (2.17) .

to ¢ may be

and the uni. principal normal a, and the unit binormal vector a,

introduced as
da_/3& as
270G T o 22T 3,1 = [, 2 .

b

- 2 = .
lagl = (ag)™ , agg=ageag , (2221 >0
where the notation [asl stands for the magnitude of . The system of base
vectors a, are oriented along the Serret-Frenet triad and satisfy the dif-

ferential equations

Aa da °a i
1 s , ~2 . % =3 - — 22
PEARASFE VP Rl SR T L G T § 5 T PR T

(2.19)

where ¥ and T denote, respectively, the curvature and the torsion of c¢. In the .
special case that ¢ is a plane curve, we may choose a, as the unit normal to the
curve and then a,

straight curve, then there is no unique Serret-Frenet triad and a.1 may be chosen

will be perpendicular to the plane of a; and a_,. If c is a

as any orthogonal triad with a,-3, as unit vectors. Equations (Z2.19) are not

Sghe designation of the tangent vector to a curve by a3 should not be confyscd
with the use of the same symbol for a different purpose in (2.13). In this
connection, see the preceding footnote.

10,




identical to the formulas of Frenet because the parameter £ is not necessarily
the arc length of ¢. It may be noted here that the convected coordinate { may
be chosen to coincide with the arc length in any one configuration of the
material curve, e¢.g., in the present configuration. However, in a gencral
motion (involving different configurations) the arc length betwecen any pair of
particles changes while the convected coordinates of each particle must remain
the same. Therefore, arc length would not qualify as a convected coordinate.

In the next four paragraphs (identified as subsections 2A and 2B} we
provide appropriate definitions for shell-like and rod-like bodies in fairly
precise terms.

2A. Definition of a shell-like body. A representation for the motion of
a thin shell.

Consider a two-dimensional surface s defined by the parametric cqua-
tion £ =0, over a finite coordinate patch a’<61<a", B’<82<8". Let r
and ag denote, respectively, the position vector and the unit normal to s.
At each point of s, imagine material filaments projecting normally above
and below the surface s. The surface formed by the material filaments con-
structed at the points of the closed boundary curve of s is called the lateral
surface. Such a 3-dimensional body (depicted in Fig. 1) is called a shell if the
dimension of the body along the normals, called the height and denoted by
h, is small. A shell is said to be thin if its thickness is much smaller
than a certain characteristic length L(s) of the surface s, for cxample, the
local minimum radius of curvature of the surface, or the smallest dimension
of s in the case of a plane. If h is constant, the shell is said to be of
uniform thickness, otherwise of variable thickness. Since a material surface
in the three-dimensional body can be defined by the equation ¢ =£\Ou), it
follows that the cquation resulting from (2.1) with § =5(6a) represents the
parametric form of the material surface in the present configuration. In
particular, the equation £ =0 defines a surface in space at time t, which

we assume to be smooth and nonintersecting. Lvery point of this surface

11.

P

*
4
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has a position vector r specified by (2.11). Let the boundary of
- the three-dimensional continuum be specified by the material

surfaces

e=¢g0'0% , £=£060% , g <t (2.20)

Lo with the surface £ =0 lying either on one of the two surfaces (2.20)1 5 OT

between them (see, for example, Fig. 1), and a material surface

A e —

fol,0%)y =0 , (2.0

e

which is chosen such that £ = const. form closed smooth curves on the surface
(2.21). As pointed out previously by Naghdi (1975a), in the development of a
general theory, it is preferable to leave unspecified the choice of the rela-
tion of the surface s (£=0) to the major surfaces s'and s7. In special

cases of the general theory or in specific applications, however, it is

necessary to fix the relation of s to the surfaces (2.20)1 2 .
s ‘
~%
We now suppose that r in (2.1) can be represented by the Taylor
cxpansion in the bounded region £1<£<£2 with coefficients which are

3 . . a < . . .
. continuous functions of 87,t and have continuous space and time derivatives

of order 2. Thus, for shell-like bodies, we write

o K' N o
r =r+ L Ed, , d, =4d.(6%¢t) (2.22)
~ ~ ~N ~N ~
N=1
and by (2.3)1 and (2.6) we also have
K od K
g, = 3,* I N —% . By = I NgN'ldN , (2.23) )
- “TON=1 38 2 N=1 ~

12.




where r is defined by (2.1) and a superposed dot in (2.22) denotes material
time differentiation with respect to t holding 6% fixed. A special case
of (2.22) which is of particular interest in subsequent developments is when

N=1, namely

where we have set d1= d.
2B. Definition of a rod-like body. A representation for the motion of
a slender rod.

. . . . a
Consider a space curve c defined by the parametric equations 8 =0,

over a finite interval 51<€<£2. Let T be the position vector of any point

of ¢ and let a

1’3 and az denote its unit principal normal, unit binormal and

the tangent vector, respectively. At each point of ¢, imagine material fila-
ments lying in the normal blane, i.e., the plane perpendicular to 3z, and
forming the normal cross-section “‘n' The surface swept out by the closed
boundary urve Bu& of.Jn is called the lateral surface. Such a 3-dimcensional
body (depicted in Fig. 2) is called rod-like if the dimensions in the plane of the
normal cross-section are small compared to some characteristic dimension

L(¢c) of ¢ (see Fig. 2), e.g., its local radius of curvature 1/, or the
length of ¢ in the case of a straight curve. A rod-like body is said to

be slender if the largest dimension ofJn is much smaller than L(c¢c). If
‘ln is independent of £, the body is said to be of uniform cross-section,
otherwise of variable cross-section. Since a material curve in the threc-
dimensional body @ can be defined by the equations §x=6a(£), it follows

that the equation resulting from (2.1) with ea==6a(£) represents the

parametric form of the material curve in the present configuration and

PSR VW U
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defines a curve ¢ in space at time t, which we assume to be sufficiently
smooth and nonintersecting. Every point of this curve has a position
vector specified by (2.14). Let the (3-dimensional) rod-like body in
some neighborhood of ¢ be bounded by material surfaces £==£], £ =Ez

(indicated in Fig. 2) and a material surface of the form

Fe',0%,6) =0, 2.
which is chosen such that £ = constant are curved sections of the body
bounded by closed curves on this surface with ¢ lying on or within (2.20)
In the development of a general theory, it is preferable to leave unspeci-
fied the choice of the relation of the curve c to one on the boundary
surface (2.26). In special cases or in specific applications, however, it
is necessary to fix the relation of c to the surface (2.26).
We now suppose that 2* in (2.1) can be represented by the Taylor
expansion in the bounded region lying inside the surface (2.26) and
between §==£1, £==£2, with coefficients which are continuous functions
of £,t and have continuous space and time derivatives of order 2. Thus,
for rod-like bodies, we write
%* = I" z ealaz"'eaNga ee ’ ga o =ga a (£,t) (-
N=1 1 N 1°°"°N 1""°°N
and by (2.3)l and (2.6) we also have
g = 98 + ; Neaz...eaNgBa o B3 T age g eal...eaN(Bga L /38) , (2.
N=1 2 N N=1 1 N

14,

26)
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where r in (2.27) is defined by (2.16), gu
to indices al...aN and a superposed dot in (2.29) denotes material time
differentiation with respect to t holding £ fixed.

(2.27) which is of particular interest in subsequent developments is when

N=1, namely

where we have put a =a.
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o is symmetric with respect
‘N

A special case of

(2.29)

(2.30)
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Part A

Elastic shells: A direct formulation

In Part A (Secs. 3-8), we summarize the main kinematics and the basic
principles of the theory of Cosserat (or directed) surfaces and then discuss
the constitutive equations for elastic shells, as well as several related
aspects of the basic theory and recent developments on the subject.

Although we are concerned here mainly with the purely mechanical theory
involving appropriate forms of the conservation laws for mass, linear
momentum, director momentum and moment of momentum, we also include a state-
ment of the conservation of energy. The latter provides motivation in the
development of certain constitutive equations, such as those for an

elastic material, and in the discussion qfhaspects of some special solu-

tions involving jump in energy. The contents of Part A are as follows:

3. The basic theory of Cosserat surfaces
3.1 Kinematics of a Cosserat surface (.
3.2 Basic principles of a Cosserat surface C.
3.3 Hierarchical theories of Cosserat surfaces.

4, Elastic shells.

5. Identification of the assigned fields and the inertia coefficients.
6. Constrained theories of shells

6.1 Incompressible Cosserat surface C.

6.2 A constrained theorv with director along the normal

to the surface of C.

7. Additional remarks on shells.

8. Basic equations for a Cosserat surface in direct notation.
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! 3. The basic theory of Cosserat surfaces

Having introduced the notion of a (three-dimensional) shell-like body
in section 2, we now formally define a direct model for such a body. Thus,
deformable media which are modelled by a material surface § embedded in a
Euclidean 3-space, together with K (K=1,2,...,N) deformable vector fieclds --
: , called directors -- attached to every point of the material surface are called

Cosserat surfaces or directed surfaces and may be conveniently referred to

B Lt RN

as FK. The directors which are not necessarily along the unit normals to the
surtace have, in particular, the property that they remain unaltered in

length under superposed rigid body motions.

¢ e A

In the absence of the directors, we merely have a 2-dimensional
material surface § which can serve as a model for the construction by direct
approach of the membrane theory of shells. With K=1, the directed medium
{ . is a body Cl==F comprising a material surface and a single deformable director
attached to every point of the material surface of C. The latter is the
simplest model for the construction of a general bending theory of thin
shells; and, for simplicity, we restrict attention to this particular model

*
in most of the development of section 3.

3.1 Kinematics of a Cosserat surface C.

Let the particles of the material surface S of C be identified by means
of a system of convected coordinates 8% (@=1,2) and let the 2-dimensional

! region occupied by the material surfaceS in the present configuration of

at time t be referred to as 4. Let r and d denote the position vector of a

typical point of 4 and the director at the same point, respectively. Also,

[

. . o
let aa,a designate, respectively, the base vectors along the 8 -curves on 4

.ﬁ
A brief account of the more general theory for Cosserat surfaces (K is
indicated at the end of this section.

oh .
BT

L
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and the outward unit normal to 4. Then, a motion of the Cosserat surface is

defined by vector-valued functions which assign position r and director d to

L3
; each particle of C at each instant of time, i.e. |,

f=%ma”) , d=de%.t) , [aa,d] >0 (3.1)
|
? where
a =a_ (8%,t) = fg; (3.2)
| e 36%

and the condition (3.1)3 ensures that the director d is nowhere tangent to

! 4. The velocity and the director velocity vectors are defined by

: ver oL owed (3.3)
and since the coordinate curves on 5 are convected from (3.2), we have

‘ ! éu "VYa (3.4)

where a superposed dot denotes differentiation with respect to t holding

i 9% fixed.

{. It is convenient to introduce here a slightly different notation than
‘ that adopted in Naghdi (1972) and a number of earlier papers on the subject.

Thus, we put

‘ d =a, , d;=4d (3.5)

and observe that, in view of (3.1)3 and (3.4), dl,dz,d3 are linearly

1 independent vectors. Hence, we may introduce a set of reciprocal vectors

For convenience, we adopt the notation for r in (2.11) and (2.25) also for
the surface (3.1);. This permits an easy identification of the two surfaces,
if desired. The choice of positive sign in (3.1)3 is for definiteness.
Alternatively, it will suffice to assume that [glgzg]#()with the under-
standing that in any given motion the scalar triple product [:ja,d] is
either >0 or<o0. T
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d1 such that

~

giOdJ = 5’; s (3.0)

where dg is the Kronecker symbol in 3-space. Whenever desirable, the
notations 91 =(gl,92,93) and (ga,g) will be used interchangeably throughout
Part A depending on the particular context. Consider now a reference
configuration, not necessarily the initial configuration, of the Cosserat
surface C. 1In the reference configuration, let the material surface of (
be referred to by SR with 8 as its position vector; let 9 be the director at

R; and let Aa,A denote, respectively, the base vectors along the 6%-curves

on SR and the unit normal to SR. Then, in the reference configuration we have

R=R®O% , D=D®OY , [A,A,D] >0, (3.7)
where
v 3R
A=A (87) = —= (3.8)
~0 ~0 ae(!

and (3.7)3 ensures that D is nowhere tangent to the surface.SR. If the
reference configuration of € is specified to be the initial configuration,
say at time t =0, then the vector-valued functions on the right-hand sides

Of (3.7), , can be identified with r(6%,0) and d(6%,0), respectively.

9

9 -

Analogously to (3.5), we set
= A , D,=D (3.9
and note that the dual of (3.6) is given by

pd o= 8d
D, + D =68 . (3.10)

19.




’ 3.2 Basic principles of a Cosserat surface C.

i In the development of this subsection, we follow the mode of derivation
of the basic theory of a Cosserat surface employed by Naghdi (1972,
Sec. 8). Let &, bounded by a closed curve 3%, be a part of 4 occupied

by an arbitrary material region of § in the present configuration at time

t and let .
; - TR
Y =V ga vag (3.11)
1
3 be the outward unit normal to 3% . It is convenient at this point to define

a_

certain additional quantities as follows: The mass density p =p(9Y,t) of

the surface 4 in the present configuration; the contact force* n =§(9Y,t ;y)
and the contact director force T==T(8Y,t ;Y), each per unit length of a
curve in the present configuration; the assigned force_f= f(GY,t) and the
assigned director force %==%(6Y,t), each per unit mass of the surface 3;

the intrinsic director force k per unit area of 4; the inertia coefficients

-vl(GY) and y2 =y2(6Y) which are independent of time; the specific internal

energy ¢ =€(8Y,t); the heat flux h==h(eY,t ;Y) per unit time and per unit
length of a curve 3% ; the specific heat supply r= r(ey,t) per unit time; and
the element of area do of the surface @, and the line element ds of the curve 39P.
The assigned field f may be regarded as representing the combined effect of (i)
the stress vector on the major surfaces of the shell-like body denoted by fc’
e.g., that due to the ambient pressure of the surrounding medium, and (ii) an

| integrated contribution arising from the three-dimensional body force denoted

by f

by €8s that due to gravity. A parallel statement holds for the assigned

*
The notations for the contact force n, the contact director force m and

the surface director force k are the same as those in Naghdi (1977), but
differ from Naghdi (1972) and most of the previous papers on the subject.
In fact, the vector fields n,m,k of Part A of the present paper correspond,
respectively, to N,M,m in Naghdl (1972) and most of the previous papers on
the subject. Also the notations for the inertia coefficients y' and yz,
which occur in (3.13)-(3.14), differ from the corresponding notations in
previous papers. In most of the previous papers (for example, Green and
Naghdi 1976a, Naghdi 1975a or Naghdi 1979a) the notations Kkl k* oT ay,0,
were used in place of y ,yz.

20.




A

field %. Similarly, the assigned heat supply r may be regarded as representing
the combined effect of (i) heat supply entering the major surfaces of the
shell-1like body from the surrounding environment, denoted by L and (ii) a
contribution arising from the three-dimensional heat supply, denoted by -

Thus, we may write

A A (312

We assume that the kinetic energy of the Cosserat surface C per unit

area of 5 in the present configuration is given by

K=’/2p(v-\~/+2yIV°w+y2w'w) . (3.13)

We further define the momentum corresponding to the velocity v and the é

director momentum corresponding to the director velocity w by ;

9K 1 9K 1 2
3y = Plv+y W) . se=olyveyw) . (3.14)

Also, the physical dimensions of p,n,f are

)

phys. dim. p = [ML 7] ,

(3.15)
phys. dim. n = [MT_Z] , phys. dim. f = [LT_Z] ,

where the symbols [L], [M] and [T] stand for the physical dimensions of length,
mass and time. The dimensions of the vector fields m,% and k depend upon the

* *
physical dimension of d. Here we choose d to have the dimension of length

and then m,% will have the same physical dimensions as n,f in (3.15) while K

will have the physical dimension of [ML'IT' ].

Depending on the choice of the physical dimension of d and with reference
to m,% and k the terminologies of the contact director couple, the assigned
dircctor couple and the intrinsic director couple, respectively, are also
used in the literature. In particular, the latter terminologies are
cmployed in Naghdi (1972), where d is taken to be dimensionless.
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In terms of the above definitions of the various field quantities and
with reference to the present configuration, the conservation laws in the 5

*
purely mechanical theory of a Cosserat surface { are

%jgpo(y+>'ly)d0=fofdo+f nds

? 3P (3.16)

! é%—f p(ylv-+y2w)do = [(po-k)do+ [ mds ,
‘ (94 - - [ 2N 3P

‘dd—tf wl“(v+ylw)+dX(y1v+VZW)]do = [ o(rxf+dxdo+[ (rxn+dxmds 3
s ® -~ v - 3¢~ T T N

The first of (3.16) is a mathematical statement of the conservation of mass,
the second that of the linear momentum, the third that of the director
momentum and the fourth is the conservation of moment of momentum. We also
record the law of conservation of energy in the form
d . < 2
Gt Lolewddo = [p(feveiewendon] mevenw-mds (5.17)
[14 @P 0P

The bhasic structure of (3.16) and (3.17) and their forms are

1,2
analogous to the corresponding conservation laws of the classical 3-dimensional
‘ continunm field theory. The structures of (3.16)3 and (3.16)4 are less
obvious, but a motivation for their forms is provided by a derivation of
the basic field equations for shell-like bodies obtained from the
3-dimensional equations of continuum mechanics in which the position vector

*

r in 3-space is approximated by an expression of the form (2.19). It

should be noted here that the conservation laws (3.16)-(3.17) are consistent

with the invariance conditions under superposed rigid body motions, which

*As the integrals on the left-hand sides of (3.16), 7 4 allow for coupling

in inertia terms, they are slightly more general than the corresponding

cexpressions in Naghdi (1972). The conservation laws (3.16) with cocfficients

y': 0 and y3r.1# 0 reduce to thosce given by Ugs. (8.11) in Naghdy (197.2). )

|
|
!
|
|
i

to
to




ordinarily have wide acceptance in continuum mechanics. Moreover, as shown
in Naghdi (1972, Sec. 8), the conservation laws (3.16)1, (3.10)2 and (3.1())‘1 arce
equivalent to, and can be derived from the conservation of energy (3.17)
and the invariance conditions under superposed rigid body motions. The
conservation law(S.l())3 for the director momentum must be postulated
separately.
Returning to the conservation laws (3.16) and (3.17), we note that
under suitable continuity assumptions the contact force n, the contuact
director force m and the heat flux h can be expressed in the forms (for

details see Naghdi 1972, Secc. 8):

, m= Ma\)Ot , h= quv (3.18)

o
n=Nv
-~ ~ o

o
o . a
where N7, transform as contravariant surface vectors and q are the

contravariant components of the heat flux vector

q = qaga . (3.19)

With the use of (3.18) and by usual procedures, from the conservation laws

(3.15) and (3.16) follow the local field equations

I ) o
pa‘=Xx or p+pa v =0 |,
2 "2
. 1.
Nalawf = p(v+y w)} ,

(5.20)

a xN*+dxk+d xM'=0
A~ o~ o~ ~,0 <
and |
pr-a| -pE+P =0 (5.01)

where




o
+keweM cw 3..02
~ o~ o~ ~,Q (3..22)

I b

4

. . . . . o
is the mechanical power, A in (3.19)1 is a function of 6 only, a comma
1 denotes partial differentiation with respect to e“, a vertical line stands
for covariant differentiation with respect to the metric tensor of the

, surface 4 and

5
a” = [a;3,3,

—
‘ol
e

2]

3.3 Hierarchical theories of Cosserat surfaces

Although the theory outlined in subsection 3.2 is sufficiently general

for many applications, on occasion it becomes necessary to consider

Cosserat surfaces with more than one director. Therefore, we now briefly
discuss the kinematics and the balance laws of Cosserat surfaces FK
having K (K=1,2,...) directors attached to every point of a material
surface &. Thus, we admit K directors at r denoted by gM (M=1,2,...,K);

and, instead of (3.1) specify a motion of (b
1,2 °P xk Y

r=r%t , 4, =d (6%t . (3.24)

The velocity vector is still given by (3.3)1 but corresponding to (3.3),

we now define the director velocities

w,=4d (3.25)

| We recall for K=1 (CH =), the kinetical quantities introduccd




! in subsection 3.2 consisted of n,k,m and the assigned fields f,%. Keeping
this in mind, for a body FK we admit more general kinetical quantities and

assigned fields

(3.20)

for N=1,2,...,K, and corresponding to (3.13) and (3.14)1 2 write thce morc

general expressions for kinetic energy of CK and associated momentum and

Bia o Budtiian 2.

director momentum, namely

K
K =%p I ythwM wN , w0 =v , 1
M, N=0 ~es ~ ~ 1
K K i
g—: = p(v+ T yMw ) =p L yMw , (3.27)
~ T M=l 7 M=o 7
3K N X M+N _ K M+N
o v+ 2y W) =02y WMo ;
~N ~ bhl M=0 - !
cach per unit area of the surface P, The inertia coefficients yM+N are
runctions of 8% only and satisfy the conditions
M+N N+M M+o o+M M o -
.' y =y > Y =y =y 5,y =1 (3.28)
! D]
In the special case of Cl (= ¢) we may use the notations 5
dp=d , Wp=w . (3.29) ’j

For a detailed statement of conservation laws appropriate for Cosserat

surfaces CK we refer the reader to Green and Naghdi (1976a, Sec. 2) but
3 indicate here the structure of the corresponding local field equations. In

this connection, we first note that for a purely mechanical theory by usual

procedure in addition to (3.18)] we now obtain mN==MNava. Then, the local

- field cquations for Cosserat surface CK are:

f 25.
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b4

K
N /N _ M+N _
yN‘amg Mo n MV 2,0,
| =0
K K
a <N+ szka+ I axM‘Nu—o
~ s N e e s

Also, for Cosserat surfaces Ck, the expression for mechanical power cor-

responding to (3.22) is

K
N o
E N ZlyN : YN,a

+
1 N=

e~
"

L2
.

t
+

W ™Mo

The general development for Cosserat surfaces CK outlined above is
contained in a paper by Green and Naghdi (1976a, Sec. 2) which deals with
application of the theory to fluid sheets and to propagation of water
waves. When K=1, the results in subsection 3.3 reduce to those of

subsection 3.2 for a Cosserat surface C.

(3.29)

(3.30)



| 4. Elastic shells

| Within the scope of the theory of a Cosserat surface € outlined in
Sec. 3, we discuss briefly the constitutive equations for elastic shells
in the presence of finite deformation. Preliminary to the discussion that
follows, we assume the existence of a strain energy or stored energy per
unit mass ¢J=w(6a,t) such that p¢ is equal to the mechanical power dcfined

by (3.22), i.e.,
f P=opy . (4.1)

In the development of nonlinear constitutive equations for elastic
shells, we assume that the strain energy density y at each material point

of C and for all t is specified by a response function which depends on

e s s

. . . . . o . '
r,d and their partial derivatives with respect to 8 . But since the response
| function must remain unaltered under superposed rigid body translational
displacement, the dependence on r must be excluded. Thus, the constitutive

assumption for the strain energy density can be written as 1

Y=yi(r ,did 5 X) (4.2)

.. . . . o
and we also make similar constitutive assumptions for N ,k,Ma. In these

constitutive equations, which represent the mechanical response of the

medium, the dependence of the response functions on the local geometrical

- properties of a reference state and material inhomogeneity is indicatced

= through the argument X.

‘if ‘ A general development of various aspects of constitutive theory of
elastic shells based on assumptions of the type (4.2) or variants thercof

is given in Naghdi (1972, Sec. 13). In the rest of this scction, we limit the

discussion to an elastic shell which is homogeneous in its reference con-

S et g Y

: figuration and suppose also that the dependence of the response functions :

27.
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on the properties of the reference state occurs through the values of the
kinematical variables in the reference state (Carroll and Naghdi 1972).

Then, in place of (4.2), we have

Y = $(£ Q’g’g o 3 éa’?’? 0.) s (4.3)

with similar assumptions for Na,k,Mu. After substituting (4.3) into (4.1),

by usual techniques we obtain the following forms for the constitutive

equations:
@ _ 3 ) o, 90
Weog L ksogg . Moo . (4.4
~,0 ~ ~,0
along with the restriction
3y 3 I
f,a X ar o * g % od * g,u X 3 a o (4.5)

which is obtained from the conservation of moment of momentum and which
must be satisfied by the response function § (Naghdi 1972, Sec. 8).

We do not discuss here the reduced forms of the above constitutive
equations resulting from invariance requirements under superposed rigid
body motions, but for such reductions refer the reader to Naghdi (1972,

Sec. 13). Just as with the equations of motion, it is necessary in
applications to specific problems to obtain alternative forms of the above
constitutive equations or their reduced forms in terms of tensor components.
Such component forms may be expressed with respect to bases a;, or 91’ or
corresponding bases in the reference configuration. Reduced forms of

{4.4) have been utilized extensively in Chapters D and [ of Naghdi (1972).
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J 5. Identification of the assigned fields and the inertia coefficients

The local field equations (3.20)} in the mechanical theory of a Cossecrat
surface have the same forms as those that can be derived from the three-
dimensional field equations (2.9)1,2,3 by suitable integration between the
limits EI,EZ frecall (2.17) and the definition of a shell-like body in

section 2] and in terms of certain definitions for integrated mass density

A - e

and resultants of stress (for details, see Naghdi 1972, Secs. 11-12
or Naghdi (1974). Similarly, the energy equation (3..21) has thc same form
as the one that can be derived from the energy equation in the threc-

dimensional theory by suitable integration between the limits 51,52 and

N

in terms of certain definitions for integrated internal energy density
and heat flux in the three-dimensional theory as given in (Naghdi 1972).
To elaborate further, we confine attention to the purely mechanical theory

o and recall the definitions .

1 E;2 * * * 1
pat=xr=["Xxdg , A =pg° , (5.1)
&)
14 € *
oatkM o Mo T2, mM=1,2) (5.2)
&
and the expressions
1 gﬁ x % 1 L
M o= patf = [T\ fdE+ [tg“if(l)(i)]€ + [tg*f(z)(c:)] , (5.3)
” h £ - ” 17 £=¢
-1 2
1 By | (72 )% % 2 o |
| A = pa®l = fg NEede (et (] ¢ Ite’t ) (O] (5.4) f
‘ ]

where p*,t,f* which occur in (5.1)-(5.4) are defined in section 2 [following

(2.9)] and in order to indicate the nature of the functions t(a)' (a=1,2 g

in (5.3)-(5.4), it will suffice to record




I,
|

2 11 2 22

. 33 12 13 23, %
fay =16y e By pl e v v 205 48 52

-gl,lg ’gl,zg )] ’ (5'5)

which involves the partial derivatives of gl(ea) and the components of the

metric tensor in (2.3). The expression for f can be stated analogously.

(2)
1f we now adopt the approximation (2.25), then there is a 1-1 cor-
respondence between the two-dimensional field equations that follow from
the conservation laws or a Cosserat surface and those that can be derived
from (2.9)1,2,3 provided we identify r and d in (2.25) with (3.1)1 and
(3.1)2, respectively, and adopt the definitions (5.1)-(5.4), as well as the
definitions of the resultants mentioned above. A similar 1-1 correspondence
can be shown to hold between the two-dimensional energy equation in the
theory of a Cosserat surface and an integrated energy equation derived from
the three-dimensional energy equation.
The various quantities in (3.12) are free to be specified
in a manner which depends on the particular application in mind and, in
the context of the theory of a Cosserat surface, the inertia coefficients
yl,y2 and the mass density p require constitutive equations. Indeed,

fc,lc and T, as well as f ,% and r,, can be identified with corresponding

~b’~b b

expressions in a derivation from the three-dimensional equations (for
details, see Naghdi 1972,1979a). Likewise, p and the coefficients yl,y2
may be identified with easily accessible results from the three-dimensional
theory.

In what follows, we assume that the above identifications have heen
made and that the quantities p,yl,yz,fh,%h are known or specified. The
knowledge of fc’&c depends on the nature of the boundary conditions on the
major surfaces of the particular shell-like body under consideration: they

may be specified as known quantities on the surfaces (2.20) or they arc

1,2

unknown (possibly on one of the two surfaces (2.20]l ) only) and must be

determined as part of the solution of the problem.




o. Constrained theories of shells

A development of a constrained directed medium in the 3-dimensional
theory, with particular reference to an incompressible liquid crystal
having a single director of constant length, is contained in a paper of
Green, Naghdi and Trapp (1970, Sec. 6). For a Cosserat surface with a
single director, a number of constrained theories have been discussed pre-
viously. These pertain to a class of shell-like bodies for which the
director is constrained to be of constant length (Green and Naghdi 1974),
an incompressible Cosserat surface (Green. Laws and Naghdi 1974, Green uand
Naghdi 1976a) and a class of fluid sheets in which the director is construained
to remain always parallel to a fixed direction (Green and Nagidi 1977).

A special case of the constrained theory of elastic shells discussecd
by Green and Naghdi (1974) includes that for which the director is
coincident with the unit normal* ag to the surface 4. This special form
of the theory can be brought into 1-1 correspondence with that of a
restricted theory of elastic shells given by Naghdi (1972, Secs. 10, 15),
where the director is not admitted and the basic kinematical ingredients
that occur in the argument of the strain energy response function are a,

and a o (compare with (4.3)). Related developments include the construc-

3,
tion of a theory of a deformable surface with simple force multipoles by
Balaban, Green and Naghdi (1967), where the position vector r and its
first and second gradient ({,a’f,aﬁ) are taken as the basic kinematic
variables. A similar theory, but less general than that of Balaban et al.

{1967), is given by Cohen and DeSilva (1966a,1968). For additional

related comments see Naghdi (1972, Sec. 10).

*The equations resulting from such a constrained theory of elastic shells
in which d =az correspond to those which can be obtained from a deriva-
tion of shell theory under the so-called Kirchhoff-Love assumption (scc
Naghdi and Nordgren 1963).
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In this section, we begin by considering a class of constraints which

are linear relations between the kinematic variables

Y,a » ¥N o fN,a (N=1,2,...,K) (6.1)
in the form (Green and Naghdi 1976a)
K K
Am.va+ 5 BMN-wN+Z CMNO‘.WNG=0 M=0,2,...,Q) , (6.2)
~ ~% N=l ™ ~NON=] Y ~
where AMI,BMN,CMN'Dt are vector functions of ai’dN’dN o only and do not depend

explicitly on the variables (6.1). We assume that each of the functions

N . C L. . *
Na,k ,MN1 are determined to within an additive constraint response so that

VR Y, S A L VA - Rl (6.3)
where Nu,kN,MNu are specified by constitutive equations and ?
Na,T(N,ﬁNa , (6G.4)

~ ~ ~

which represent the response due to constraints are arbitrary functions of
6*,t and are workless. Thus, recalling the expression (3.30) for mechanical
power, we set

K K
ﬁa'v“+ ZiN°wN+ ZﬁNa'wNa=0 (6.5)
- N=1 ~ N=1 R

for all values of the variables (6.1) subject to the constraint conditions

(6.2). It then follows that

Q

=- X AMapM , (0.0}

eZé

M=o ~ - M

&0
I~}
3
=
Q
1]
1
[l Ve
3
R

o] M

*

The development between (6.2)}-(6.6) is similar to that for mechanical
constraints in the 3-dimension.. theory (see section 30 of Truesdell and
Noll 1965). For a corresponding thermodynamical theory of a continuum
in the presence of thermo-mechanical constraints see Green, Naghdi and
Trapp (1970) and Green and Naghdi (1977).
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where Py = pM(ea,t), (M=o0,1,...,Q) are arbitrary functions which play the
role of Lagrange multipliers.

In the rest of this section, we illustrate the nature of constrained
theories with reference to two particular kinematical constraints. One of
these constraints is that appropriate for incompressible media and the other
pertains to a restriction on the director in the theory of a Cosserat

surface C with a single director.

6.1 Incompressible Cosserat surfaces

The conditions representing approximately the (3-dimensional)
incompressibility condition (2.10) may be derived with the use of the
approximation (2.22)]. However, in the interest of brevity, we confine
attention to a special case of (2.22)1 for N=1 given by (2.25). Under

the approximation (2.25), the base vectors are given by 84 =§a-*id o’

=d, where a, are the base vectors of the surface £ =0 calculated from

g3

(2.25). Then, the incompressibility condition (2.10) may be expressed

approximately in the form

d d ad ad 2 d od ad
— la,a,d] +& 5= {[—=a,d] +[a, =5 d]} +&° == [ —= d] = 0 (6.7)
dt <122 dt 381 ) ~1 ae2 dt 36l 862

or equivalently as

oA ] aB .
[(d=aga”-(d-afagvE(e™d gxd)] v

2 a (18 20-8
R S R e TR

where in (6.7) and (6.8) use is made of the notation (3.29)1 2 and EGB.(

denote the components of the g-system in 2-space defined by

11 22 12 21
e = e =0 , e =-¢

al -% aB
‘. = a ‘e = - =1 ,

’

1, {(6.9)
a’e

aB af

= = () = - =
ell 322 ( , e e 1

£
We now generate two conditions representing incompressibility: One of thesc

33.
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B

‘ is obtained from integration of (6.8) with respect to £ between the limits

51,52 and another by first multiplying (6.8) by £, neglecting terms
|
f involving &3 and then integrating the resulting equation with respect to

¢ between the limits &1,52. The resulting two conditions arc:

o . o .0 1 aB .
(i@ aar-dradagd ey e gxdl ey

v %y e ey @y xd ) e vPd X d ) e w

+ {EQB[Yl(ngg) +Y2(9’f—’,xg)]} . y’u =0

(6.10)

z {Yl[@ . 33)50‘ -(d- ga)gsl +Y2ca8(§’8x v

1 2 af . 2 aB . . _
j + {y a;+ty e (§a>‘§,8)] wty'e (gBX g) E,Q =0
where the coefficients YK are defined by
g
YK = f 2 EKdE , (K=0,1,2) . (6.11)
El

It is perhaps interesting to observe that in special circumstances in which
*
| the quantity X in (5.1)-(5.2) is or can be approximated to be independent

of £, then the coefficients y! and vy in (6.10) will have the same numerical

2
values as the inertia coefficients y1 and y”, respectively.

For an incompressible Cosserat surface under discussion, from (6.2)

the constraint conditions are

{

i A%,y sglllyaclleLy oo
~ -~ - ~.0 (6.12}
Alaov +B“-w+C“a-w =0 ,
- ~yd o~ ~ o~ <,0

and the corresponding constrained response obtained from (6.6) has the form

1
'(poéoa'*plé G) g

=

-~

°°‘+p1§“) , (6.13)

k =-(pB

-~

?u ~ (POCOIG"pISIIG) ’

-~

[ —

where Py Py are the Lagrange multipliers. Guided by the two conditions

“,HOI,CO]G

,+.., which

. o
which follow from (6.10), we sclect the vectors A

t occur in (6.12) to have the special values
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Kla
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Then, it follows from

= coeff. of v o in (6.10)

coeff. of w in (6.10) (K=o0,1)

coeff. of w o in (6.10)

(6.13) and (6.14) that the expressions

*

straint response are given by

-4
1]

e arbitrary
b

poL,p, and ¥ p  can he

'()Il ! }0 )

0
P = y o+
0 rl 0

In obtaining the resuits (6.10) and (6.15), no identification has bcen
made between the surfaces (3.1)1 in the theory of a Cosserat surface (
and an appropriate reference surface in the (3-dimensional) shell-like body.
Indeed, different values for the coefficients YK in (6.10) will

result depending on the choice of the identification with the surface

f=0.

ot the shell-like bodyv in such a way that £

ficients vy  in (5.8)

coefficient functions PO,P

1
! Pl ) Pl

B

b RN A ) o
Polld=agla - (d-aia)-Pied g>d
B _p o, uB, a2 B
pogs ll' ?a)<g.P 2 Pyt 9,u)(9,8
i =—}Haupdpxci—Y2p € dxd 8

1 are related to the

cxpressed in terms of PO,P1

2
Y P

1 2
EYPLrY R s b, T

For example, if this surface is chosen between the major surfuacces

1

and PO,P] in (6.15) become
o 1 2 1
y =1 , v =0, y = 1z
1
Po =P » Py =T3Py

as follows:

o2 1.2
Yy -(y)

= -€2= -2, then the coef-

(6. 141)

for the con-

(06.15)

Lagrange multipliers

-‘Ylpl
{(G.10)

*
Although the expressions (6.15) have the same form as those given previously

(Green and Naghdi 1976a, LEqgs.

relations (0. 16)

(4.2)), they are not the same in view of the




and the incompressibility conditions (6.10) reduce to those used by Green

and Naghdi (1976a, Eqs. (4.3)) for a directed fluid sheet with a single
director. On the other hand, if we identify (3.1)1 with the bottom surface
of the shell-like body so that § =0, £,=1, then the coefficients ¥ and

P ,P. become
o’ 1

o 1 _, 2 _ 1
Y =1 s Y T %2 0 Y '3 ’
(G.18&)
Py = Pot’p P, =, +5
o o ) 1 o 37"1
For a complete theory of an incompressible Cosserat surface, constitu-
. . .t - . .
tive equations are required for the quantities N,k and M* but a discussion
of these can be carried out as in Sec. 4.
6.2 A constrained theory with director along the normal to the surface of
We turn now to the development of a constrained theory of a Cosserat
surface in which the director is always along the normal to the material
surface so that
dea, =0 , d=¢a, , o =07, t) . (6.19)
Differentiating the constraint condition (6.19)1 with respect to time and
using (3'3)2 and (3.4) we obtain

dev + ew =20 |, (6.20)

which represents two constraint conditions. From (6.19)_ , along with the use

of (2.13)1 and (:.15)3. follows the expression

. = - 6. 21
g‘:(l 38 ¢b0. o )

B b

which is symmetric in a,8. Hence
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eas(d *a

d ut2) =0 (6.22)

g

where ¢ is defined in (6.9). Differentiating (6.22) with respect to t and

observing that eas(d a -aB)=O in view of (6.22) and the fact that

Tal -1l
P2 am %™ we also have

Pa oy

. = )
<, ~,B * Y,a) o (0.-23)

as a third constraint condition.

The two conditions (6.20)1’2 can be regarded as a special casc (6.2)
for K=1 and with the coefficient of !’Q equal to zero. Similarly, (6.23)
is a special case of (6.2) for M=o, K=1 and with the coefficient of W cqual
to zero. Thus, cach of the three constraint conditions (6.20)1,2 and (6.23)
may be viewed as a special case of (6.2) with coefficient functions

o .ol .ola AMX Ml Mla

AT,B T, C ,: ,B 7 ,C conveniently identified as

(O _ Erud . Bo =0 ola - EaBaB ,
~ ~ ~ ~ (6.21)
Moo L ML Mlo _ o,
AT oe A, BT o=ay O =0 (M=1,2)
Now according to (6.6) und with the help of (6.24), the expressions for the
constraint response dare
2
- N
N = —[pOEBad + L pdéud] = - [pOEBad +pad] ,
- ~B oy M B <
- - (6.25)
= _ - M« x _ o _af
K=o Epay=oeg o Woeopitay
M=1
where po,pa are the Lagrangian multipliers, and in line with the notation of

(3.29), , and that of subsection 3.2 we have set k1 =k, M1a==hp !

1,2 ~ T

In anticipation of the final form of the equations of the constrained

theory, we could set the skew-symmetric parts of both MY and MY cqual to

zero and thus require also the vanishing of the skew-symmetric part of Y

: . , . 0
which ts equivalent to setting p =0. However, we postpone such stipulations
until later in this section, and retain in (6.25) the Lagrange multiplier po

which arises from the constraint condition (6.23).
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Before recording the modified equations of motion appropriate for the
constrained theory under discussion, we introduce the functions SG'=SQ(OY,t)
defined by

Sa == [pa + EaSP?B]

and note that

Also, for convenience, we introduce the abbreviation

[ ]

f=f-(\~/+y1\g) , =%—(y1v+y2W)

Then, after substituting (6.3) and (6.25) into (3.20) and making use of

3,4,5
(6.26) and (6.27) we obtain

p )
Nogtef=- 0572,
M -k +pf = s%a ,

~ o™ 2 TF2 -0
aaXNa+ka+d XMa=O ,

as the equations of motion of the constrained theory. It should bc noted
that the uabove cquations involve only two arbitrary functions of position
and time related to the three multipliers po,pa by (6.26). Moreover, (0.29)z
and the normal component of (6.29)2 are free from S”.

A further reduction of the system of equations (6.29) may be effected
by eliminating S* between (6-29)1,2. For this purpose it is convenient to
refer the various vector quantities in (6.29) to the base vectors fi and

*
write the equations of motion in tensor components. Thus, we write

*
As noted carlier, the order of indices in (6.30); ; are opposite to thosc
used in Naghdi (1972) and most of the earlier papers on the subject.

{0.206)

(6.27)

(6.28)

(6.29)




’ . . .
! N = Nlaa. , k = k'a. s Ma = Mlaa. ) (6.30)
~ ~1 ~ ~i ~ ~i
i i
f = f a, & = £ a, (6.31)

with similar expressions for Nu,k,Mu,f,l. Recalling (6.19)1 and making use

of formulas of the type (6.30), from the scalar product of (6.29)3 with aB

M an. mtbase ke -

| and again with a:,> we deduce

~oB Boay, _
ea(N -¢>bYMa) =0

: N3 gk® - ¢>b$M3Y -4 YM"‘Y -0 ,

—_—
-~
<
2]
e
SO S Y TSI DT S

oB

where €~ is defined in (6.9). :}

It is instructive at this point to express the mechanical power (3.22)
in terms of the tensor components (6.30). To this end, we first note from

(6.19)1 and (2.13)1 9 that the tensor components of w and w

~y

referred to ui

are

L = - -L—-. L] Y - L
Wt = (cbbem)+<1>bw(\~/’B a’) ¢,a(Y8 a

™~

) (0.33)

tE

.

[

w

1]
- o .

- = X - L] YB
' !,a 23 ¢,u ¢ba8(!,y ES)E

Then, remembering (6.4), (6.5) for N=1 and the notation (3.29)1 >» We may

write (3.22) as
_ o By . 03 oBo e 30
P = (P obBM N (v v ag) o k0 MU @D ) M
o V%o M abg Py v cag)

Since the cocfficient of (v o -a3) vanishes identically in view of

(6.32),, the last expression reduces to
2 p

i
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_ CaB Bory . ~3.
P = (N -¢bYM°‘ )V, v ag) +k70

gy
ORI (6.34)

~

and does not involve the couwponents N3a and k. Next, with the help of
¢ka-r¢M3Yb$:=Nsa-MuY¢ v which follows from (6.32)2, the component form

. i .
of the equations of motion (6.29)l 2 referred to a~ can be written as
, =

NB"‘la-ng”wa -0 , Nsa‘u+b8aNaB+pf3 -0 (6.35)
(qus"‘)‘mmz8 - N Msa‘a+bBaM8a—k3+p23 -c (6.30)
. 3a
where in recording (6.35) and (6.36) we have also substituted N for the
quantity (N3a-+¢5a). By substitution from (6.36)1, we can now eliminate
N3a from (6.35)1 2" In this way, the resulting two equations may be put
in the form
x . B B Yn a . o b ;]a- B }a
(- 2y - oM+ o)) dag Lo+ a®) g+ OF - 2 ag
+{pf+ [p(bi?, a )la} =0 . (6.37)

In a general theory of an elastic Cosserat surface (Sec. 4), constitutive

equations for both the symmetric and the skew-symmetric parts of NOLB,MOLB can

be provided through the expression for mechanical power. Here, however, sincc
baB is symmetric, the term -QBQ(EB:;) in (6.34) provides constitutive equations
for only the symmetric part of QGB. Moreover, the quantity (ﬁaB-¢b$ﬂ“Y) is
symmetric by virtue of (6.32)1 and the two differential equations resulting from
(6.37) involve only the symmetric parts of ﬁaB and gaB_ Thus, in line with

classical results in shell theory, in order to obtain a determinate theory we
*
now put

uleBl _ o ploB) |y qp8 gesy (6.38)
In summary, the relevant system of equations of the constrained theory under

discussion are given by (6.37), the normal component of (6.29),, i.e.,

af

(6.36)2 and the skew-symmetric part N is determined from (6.32)1. This

= ~
Instead of introducing (6. %8)1, in anticipation of the fact that Mlaa] makes

? L?ntrlhut1on to the mechanical power, at the outset we could have absorhed
oBl into MI®B) or equivalently into M in (6. 25).




completes the development of the constrained theory in which the director
is constrained to have the form (6.19)1.

If in addition to (6.37) we also set the multiplier p°==0, then

ﬁ[a81==0 and hence the skew-symmetric MlaB]: 0. It then follows that
s* =-pa , (6.39)
Nsa = Nsa__¢sa , o= K*-s® (G.44)

and the relevant equations of motion of the determinate constrained theory
remain as before. Tt is of interest to examine the reduction of the fore-
going development when ¢ =1. In this case, we have §==§ instead of

(6.19)1 and the resulting equations are identical with those of a restricted
theory discussed by Naghdi (1972, Secs. 10 and 15). The results with ¢ =1
can also be brought into correspondence with a special case of the con-
strained theory discussed by Green and Naghdi (1974) or those contained in
the paper of Naghdi and Nordgren (1963).

The nature of the boundary conditions in the theory of a Cosserat
surface  discussed in subsection 3.2 is clear from the expression for the
rate of work RC of contact force and contact director force over the closed
boundary curve 3%, namely

RJ9)=I (B-X+T-pds . (6.41)
AP
tiowever, in a constrained theory of the type discussed in subsection 6.2,
the question of the boundary conditions must be reconsidered in view of
*

the reduction in the number of differential equations . Since the develop-

ment of the reduced boundary conditions is similar to that of a restricted

*

The number of the relevant scalar differential equations of the constrained
theory is five as compared to the nine scalar equations in the theory of
subsection 3.2,

S S




theory (Naghdi 1972, p. 552), our discussion will be brief.

Recalling (6.30)1 2.3 and (6.33), from (6.41) we obtain

. = YO Y 30 30, Yo
, R.(@) fagva{(N ¢bBMB )vY+N Vot MG - ¢M VS’Y}ds (6.42)

Let 3/9v stand for the directional derivative along the unit normal v to

the boundary curve 3% and let 3/9s denote the directional derivative along

the tangent to 3%. Then, provided the quantities in (6.42) arc single-

- valued on a (sufficiently smooth) closed curve 3%, with the use of

' ov v |
E 3 3 8 = :
] = —= - L4 )
- Vay oy \)Y Y eYB\) (6.43) |

and an integration by parts, (6.42) can be reduced to

v

__:% + Hplds , (6.44)

R, (P = tpbv +p3v3~G 5

Y S

i where

B _ Bo B Yo P (¢ _ oy (Y)
p = (N - d)bYM )\)Ot , G = ¢M \)Y\)a = ¢M vyv
(6.45)

- 3 aMV® B -
p- = ¢N va-as(q&M vaeYB\)) , H=M Yy

y The nature of the reduced boundary conditions of the constrained theory is

now clear from (6.44) and (6.45).




7. Additional remarks on shells

The theory of Cosserat surfaces can easily allow for the effect of
surface tension (Naghdi 1972, p. 547 and 1974) and can accommodate the
specification of either tractions or displacements on major surfaces of the
shell-like (or sheet-like) bodies for application to various interfacial and

contact problems. Even the theory of a Cosserat surface with a single

director can be used to formulate a fairly broad class of contact problems

of elastic shells and plates, as discussed by Naghdi (1975a). The relevance

and applicability of the basic theory of a Cosserat surface to problems of
an incompressible, inviscid fluid sheet is discussed by Green, Laws and

Naghdi (1974) and by Green and Naghdi (1975,1976a). The nonlinear dif-

e amifCa o woen

ferential equations derived in these papers include the effects of gravity
and surface tension and are also valid for propagation of fairly long water
waves in a stream of initial variable depth. A discussion of an incompres-
sible viscous fluid sheet, along with further recent developments on the i
subject, can be found in the papers of Green and Naghdi (1976a,b;1977a;1979c¢).
The basic theory is also applicable to problems of cell membranes, as has ;
been emphasized by Ericksen (1979). E
In the remainder of this section we briefly comment on some special cases j

of the general theory and also mention some recent researches which bear on 1

the various aspects of elastic shells. Although these developments will be
described mainly in the context of a mechanical theory, some recent results
pertaining to thermal effects in shells are also discussed.

The well-known membrane theory of shells can be obtained as a special
case of the general theory by essentially suppressing the effect of the
director and corresponding kinetical variables and this is discussed bricfly
in Naghdi (1972, Sec. 14). A development of another special theory, known
as the inextensionai theory, wherein the length of cach clement of the
surface of 84 is assumed to remain constant throughout all motions is also

43.
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contained in Naghdi (1972, Sec. 14). Similarly, a nonlinear restricted

theory of shells by direct approach, motivated mainly by the classical
theory corresponding to Kirchhoff-Love theory of shells and plates, is
given by Naghdi (1972, Secs. 10 and 15). Related constrained theories of
an elastic Cosserat surface are already mentioned in Sec. 6 and need not
be repeated here.

The nonlinear constitutive equations in Sec. 4 are valid for in elastic
Cosserat surface which may be anisotropic with reference to preferred direc-
tions associated with material points of §. A general discussion of material
symmetries for shells is given by Naghdi (1972, Sec. 13). Carroll and Naghdi
(1972) have subsequently examined the influence of the reference geometry on
the response of elastic shells by assuming the existence of a local preferred
state of the body and then stipulating that the influence of the reference
geometry, as in (4.3), occurs through the values of the constitutive variables
in the preferred state. Material symmetry restrictions for elastic shells
have been discussed also, from a different point of view, by Ericksen (1972a,
1973b) who has also indicated (Ericksen 1973) a comparison with the results
contained in the paper of Carroll and Naghdi (1972).

Some general aspects of wave propagation in elastic shells, based on
the theory of a Cosserat surface have been discussed by Ericksen (1971). A
related study on the subject, limited only to wave propagation in a surface
not endowed with a director, was given earlier by Cohen and Suh (1970). The
theory of small deformation superposed on a large deformation of an elastic
Cosserat surface, along with related problems of stability and vibrations of
initially deformed plates, is discussed by Green and Naghdi (1971). Related
developments concerning plane waves and stability of elastic plates arc given
by Ericksen (1973¢,1974). For a system of linear equations characterizing the

initial mixed boundary-value problem of elastic shells, Naghdi and Trapp (1972)




have obtained a uniqueness theorem without the use of definiteness assumption
for the strain energy density. This result (Naghdi and Trapp 1972) holds

for nonhomogeneous and anisotropic shells undergoing small motions super-
posed on a large deformation.

In still another study, the theory of a Cosserat surface has been
employed by Naghdi (1975a) to formulate contact problems of shells and
plates mentioned above. In the derivation of shell theory from the 3-
dimensional equations, equations of motion in terms of resultants and
detailed consideration of constitutive equations for shells are usually
obtained relative to an interior surface, rather than one of the major
surfaces of the shell-like body which may be the contacting surface; the
interior surface ordinarily is identified with the middle surface of the
shell or plate in the reference configuration. In the development of shell
theory by direct approach, although the material surface of § may be
identified with any surface of the (3-dimensional) shell-like body,
nevertheless the complete discussion of constitutive equations and the
identification of the inertia coefficients and the assigned fields may
again require explicit use of a reference surface in the shell-like body.
For certain problems it is more natural and conceptually more appealing to
select one of the two major surfaces as the reference surface but then the
detailed available development of the constitutive equations, as well as
identification of such quantities as the inertia coefficients, have to be
reconsidered relative to the new surface. This problem can be resolved by

deriving appropriate transformation relations (Naghdi 1975a), which rclate

the kinetic variables n,k,m (and hence the response functions) in the two

formulations. The results (Naghdi 1975a) are applicable to any shell-like
medium and their validity is not limited to elastic shells alone.

Controllable solutions in the theory of a Cosserat surface have been




studied by Crochet and Naghdi (1969), Ericksen (1972b) and Naghdi (1975b).
In a more recent study, Naghdi and Tang (1977) have discussed controllable
deformations that can be maintained, in the absence of body force, in every
isotropic elastic membrane by the application of edge loads and/or uniform
normal surface loads on the major surfaces of the thin shell-like body.

The static solutions of finitely deformed membranes, which are valid for
both compressible and incompressible materials, are obtained with the usc
of a strain energy response function which depends on the metric tensor of
the membrane it its deformed configuration. The main results are summarized
by several theorems and their corollaries in accordance with three mutually
exclusive cases for which the initial undeformed surface of the membrane
(which may be a sector of a complete or closed surface) is, respectively,
developable, spherical and a surface of variable Gaussian curvature
satisfying certain differential criteria. The corresponding deformed
surfaces are, respectively, a plane or a right circular cylinder, a sphere
and a surface of constant mean curvature. These results are exhaustive in
that they represent all finite deformation solutions possible in every
isotropic elastic material characterized by the strain energy responsc
mentioned above. Also discussed in the paper of Naghdi and Tung (1977) arc
some special cases of the general results and several familics of solutions
in terms of an alternative description which should be useful in application
and which permit easy interpretation.

The development of the theory of Cosserat surfaces in Sec. 3 1-
carried out within the scope of the purely mechanical theory.  In earlier
work on thermo-mechanical theory of shells by direct approach {(treen and
Naghdi 1970, Naghdi 1972), only one temperature field was admitted and this
allowed for the characterization of temperature changes along some reference

surface, such as the middle surface, of the (3-dimensional} shell-like body,

40 .
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but not for temperature changes along the shell thickness. The latter !

o

effect has been incorporated recently by Green and Naghdi (1979a) into the

thermo-mechanical theory of Cosserat surfaces, together with appropriate

. — ——

thermodynamical restrictions arising from the second law of thermodynamics

for shells.

ey




8. The basic equations in direct notation

For some purposes it is convenient to have available the basic equa-
tions for a Cosserat surface in a direct (coordinate-free) notation and
this is the main purpose of the present section. As will be evident
presently, the forms of the basic equations in coordinate-free notation
are very similar to those of the corresponding equations in the c¢lassical
3-dimensional theory and thus may be more suitable in the discussion of
general theorems or in developments which paraliel those in the 3-dimensional
theory.

As in the papers of Carroll and Naghdi (1972) and Naghdi (1977), we
introduce the notations grad and Grad to denote the right spatial and
material gradient operators, respectively, with respect to the position on
the surface 4 in the current configuration and on the surfaceSR in the
reference configuration. The corresponding divergence operators will be
denoted by div and Div, respectively. In particular, for a vector-valued

*
function V(ea,t), we write

gradV=Va®da , divv=va-da ,
(8-1)
] . a
= S « d
mndy &QQP s MVE Yﬂ d R
where the symbol @ denotes the tensor product. Also, the spatial surface
gradient and the spatial surface divergence operators are defined by
grad V=1V a® , div V=V a® (8.2)
s ,a ~ ~  ~,a -

We take this opportunity to correct an error in a previous paper (Naghdi
1977). The definitions (2.9)1‘2 of Naghdi (1977) should be replaced with
those in (8.1); , of the present paper with d® defined through (3.5).

Also, the "div''’operator in (3.10); of Naghdi (1977) should be replaced by
"div," in (8.2),. The definitions (2.9)3 4 of Naghdi (1977) remain unchunged
since previously (Naghdi 1977) the directdr in the reference configuration
was specified to have the form D=DAz. Except for the modifications noted,
all other results in the paper of Naghdi (1977) remain intact.




for all scalar-valued functions V and all vector-valued functions V.
- . +
We introduce a measure of deformation by the tensor F, namely

F=d ® Dl=Gradr+d3®DS , (8.3)

and in view of the notations (3.5) and (3.9) we observe that

f Pa - f 5a "% T % (8.4)
FDy=FD=d=d,
From the definition of the determinant of a second order tensor I given by i~
det T{v,vyvg]l = [T v),T v,,T vy]
for all arbitrary vectors MO DEL and the conditions (3.1)3 and (3.7)3
we obtain
det F = [d,d,d;]/[D;D,D;] > O . (8.5)
The tensor f, a linear operator on vectors in 3-space, is nonsingular; and ;
there exists, therefore, the inverse deformation gradient tensor f_l ;
defined by i,
, i
Floped CO

. -1 . . . .
The inverse operator F ~ transforms vectors in the present configuration into

vectors in the reference configuration, i.e.,

Fld. = p, (8.7)
~ ~1 ~1

and it follows that

TThis definition of F is the same as that used by Naghdi (1977). The
symbol F in the paper of Carroll and Naghdi (1972) stands for a different
yuantity. The term Grad r in (8.3) corresponds to the deformation gradient
tensor F in the paper of Carroll and Naghdi (1972).
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Fle-rrFl-1-40d-p00 , (8.8)
where | is the unit tensor in 3-space. We also introduce here the director
gradient tensor G by

_ _ o o]
G = Grad d = 93,a®~ = g’a®g (8.9)
Recalling the definitions (3.3)1 2 for the velocity and the director
velocity and since éa==v o e have
i o 3
F=di®D =d®D +d3®D Va®D +w®D ,
(8.10)
S o _ (o]
G= 9.3,01‘39 - ‘l’,a®9
Also,
FF!=d.ed - gradv+w®d3 ,
(8.11)
GFl=w a@da = grad w
Having disposed of the main kinematical results in terms of the
gradient tensors F,G and their rates, we now turn to kinetical
quantities. The expressions corresponding to (3.18)l 2 for the contact
’ §
force n and the contact director m can now be expressed in the form”
n=Nv , m=Mv {8.12)
*The second order tensors N M in (8.12) and their tensor components N Y in
(8.13) are the trapsnose of the corresvonding guantities in Naghdi (1077) The

components NI® Mm%  were used in the paper of Green, Naghdi and
Wainwright (1965) but subsequently their transpose, namely N*! and M

were adopted in subsequent papers so that the notation would be in agree-
ment with that of the classical shell theory. It may be noted that 1n
terms of the latter notation, instead of (8.12), one would have n-= N v,

m= MTv where the superposed T denotes transpose. Compare (3 6) Tand (3.10)
of Naghdi (1977) with (8.12) and (8.15) of the present paper
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with the sccond order tensors N,M defined by

& 100 ;
N = N*oz-du = N d,%d, NY =N dt
(8.
M= Med = MY ed 0 M e nat
. - (x 1 - -
which also relate the tensors N,M to Na,r\fJ in (4.8). Also, for convenicence,
woe o introduce a4 scecond order tensor K through
. i 3
K = k®d, = k'd,®d , k = Kd . (8.
- ~ 3 ~1 7 <3 N o~
With the usc of (a1 and by usual procedures, from the conservation laws
{5 1o tollow the Jocal cquations
p+pP divs‘ v =0 N
. - : 1’
ch%N+pf= plv+yw)
(8.
. ] 1° 2°
div M+ -k = p(vv+yvw)
S"‘ ~ ~ -~ ~
1T o
[N+K+M(G F )I] - Neken@ YT
which are cquivalent to (3.20). Also, by the definition of the right
divergence of a tensor field, we have
s . X
div N =N, divM=M, . (5.
S~ o~ ja s~ o~ |

[t is interesting that the last statement in  (K.]15) 15 anzlogous ta the syvumet ry
of the stress tensor in the S-dimensjonal theory. In particular, 1t wmanv be

1 . .
observed that a rth, dxk and d‘tx M are, respectively, the axial vectors
I T S | . . .

-M(G F )], Furthermore, in terms ot the

of IN-NTT, [K~Kl] and  [M(G B

hrnetical quantities, NMK in (8.12)-(8.14) and the rate quantities (3.10)

[

the wechanical power hecomes

Pl ey s ot (8.

135)

11)

15)

o)
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With reference to constitutive equations tor elastic shells, instead
ot the hinematical variables in section b, we now emplov the variables (8.4
and (B.9).  Thus, corresponding to constitutive assumption (3.35), we jow
write
l Y= ‘;/(.F‘(;;R(,” R (50N
where
. Go=Grad b = Do &' PN
R- SO oa .
along with similar assumptions for N KM, Then, with the usc ot (1.1
and (3.17), by usual techniques we obtain the tollowing alternative forms
| ot the constitutive cquations:
E W I \" |
: o Sy T G T ,
N+K = &~ F . M= Lk (8. 0
: . . ¢ ak o - A0 !
: : N
]
: the tfirst of which can be resolved into
|
§
; , A . s 3 o
' N oo tRd )y L K s s (DT&dL) (5,000
- eIk N iy - OAF . ~
\lwo, the response tunction b is restricted by
T ‘
S-S5,
! - {
b R . -
TR AT T Yl , v 3 J Lo ]
S oty m B e gy e S (s 2 G (8.5 |
il 30 il - (Y gk N (5




Part B

Elastic rods: A direct formulation

In Part B (Secs. 9-13), we first summarize the main kinematics and
the basic principles of the theory of Cosserat (or directed) curves and then
Jdiscuss the constitutive equations for elastic rods, as well as some related
aspects ot the basic theory and recent developments on the subject. Although

we are concerned here mainly with the purely mechanical theory involving

appropriate forms of the conservation laws for mass, linear momentum, dircctor

momentum and moment of momentum, we also include a statement of the conscrvia-
tion of cnergy. The latter provides motivation in the development of
certain constitutive equations, such as those for an elastic material, and

in the discussion of aspects of some special solutions involving jump in

energy. The contents of Part B are as follows:

9. The basic theory of Cosserat curves

1 Kinematics of a Cosserat curve R.
9.2  Basic principles of a Cosserat curve R.

3 Hicrarchical theories of Cosserat curves.
10, Llastic rods

11. Identification of the assigned fields and the inertia coefficients

12. Additional remarks on rods

13.  The basic equations for elastic rods in direct notation
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9. The basic theory of Cosserat curves

liaving defined a (three-dimensional) rod-like body in scction 2, we now
formatly introduce a direct model for such a body. Thus, detormable media
which are modelled by a material curve [ embedded in a Euclidean 3-space,
together with L (L= 2) deformable vector fields -- called directors --

attached to every point of the material curve are called Cosserat curves or

djffflﬁg curves and may be conveniently referred to as.@K (K=1,2,...,N).
The directors which are not necessarily along the unit principal normal and
the unit binormal vectors to the curve have, in particular, the property
that they remain unaltered in length under superposed rigid body motions.

In the absence of the directors, we merely have a l-dimensional material
caurve £ which can serve as a model for the construction by direct approach
of string theory. The relationship between the number of dircctors L

and the number K which identifices the order of the hierarchical theory of

K
Cosserat curves can be shown to be L=5 (N+1) so that (sce Nughdi 1979h)
1
L = K(K+3)/2 . (9.1)

With K=1, the directed curve is a bodyfR1=£R comprising a matcrial curve
and two deformable directors attached to every point of the material curve
of R. The latter is the simplest model for the construction of a general
bending theory of slender rods; and, for simplicity, we restrict attention
to this particular model in most of the dcvclnpmvnt+ in scection 9.

We now turn to a brief account of the basic theory of a Cosserat curve.

9.1 Kinematics of a Cosserat curve R

Let the particles of the material curve £ of R he identitied hy means

of the convected coordinate # and let the curve occupied by £ in the present

BN
\ hrict accomnt of the more general theory for Cosscerat curves is indicated
at the end of this section.




configuration of R at time t be referred to as 2. Let r and dOt (w=1,2)
denote the position vector of a typical point of £ and the directors at the
same point, respectively, and also designate the tangent vector to the

curve £ by a Then, a motion of the Cosserat curve is defined by vector-

~3
valued functions which assign a position r and a pair of directors du to

* %
each particle of R at each instant of time, i.e.

= = i . -
—I: r(g’t) ’ 90. ga(gxt) > lg gEfSI > 0 (v.2)
where
ar
- = 5T 9.3
3z = 3;(E,1) =5 . (9.3)

The condition (9.2).S ensures that the directors da are nowhere tangent to

g and that dl,d2 never change their relative orientation with respect to

each other and a The velocity and the director velocities are defined by

~3

v=r , w =4d , {9.4)

and from (9.3) and (9.4)1 we have

Q| @
i <

a
~3
where a superposed dot denotes material time differentiation with respect to

t holding £ fixed.
It is convenient to introduce here a slightly different notation than
that adopted in a number of previous papers, e.g., Naghdi (1979a). Thus, we

put

'E3

For convenience, we adopt the notation for r in (2.16) and (2.30) also
for the surface (9.2)1. This permits an easy identification of the two
curves, it desired. The choice of positive sign in (9.2)3 is for
detiniteness.  Alternatively, it will suffice to assume that [djd,az] #0
with the understanding that in any given motion the scalar triple product
|dld,u;l is cither >0 or« 0,

A tem w
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1 = = .
dg = a5 » dy = (d),a,) (s

and observe that in view of (9.2)3 and (9.6), dl,dz,d3 are lincarly
E : independent vectors. Hence, we may introduce a set of reciprocal vectors

dl such that

d. ~d-i = Gj , (4
i

] f where 6% is the Kronecker symbol in 3-space. Whenever desirable, the
notations gi =(91,§2,93) and (gu,g‘) will be used interchangcably throughout
Part B depending on the particular context. Consider now ua reference con-
figuration, not necessarily the initial configuration, of the Cosscrat

curve R. In the reference configuration, let the material curve of R be

referred to by £, and designate the unit principal normal, the unit binormal

R
and the tangent vector to '{R by A ,A, and Ag, respectively. Further, let
R and Da {a=1,2} stand for the position of a typtcal point of 1& and the

directors at the same point, respectively. Then, in the reference con-

figurat ion we have

— = )
R= R 0= DE) Iyl >0 &
where
oR
= :“; ()
Ay = Az(8) = &7 ¢
and (9.8)% ensures that Du are nowhere tangent to the curve .ER. 1f the

reference configuration of R is specified to be the initial contiguration,
say at time t =0, then the vector-valued functions on the right-hand sides
of (9.8)1’2 can be identified with E(E,O) and 90(6’0)’ respectively.

Analogously to (9.0), we sct

D, = A b= (DAY Y
. . ol

L0)

.7)

.8)

)

1)




so that the dual of (9.7) is given by

D, « n) = si i (9.11)

9.2 Basic principles of a Cosserat curve R

Consider an arbitrary part of the material curve [ in the present con-
figuration, i.e., a part of the space curve £ bounded by ¢ =E] and

f=0, (<8

2 1

2), and let
ds = ("’33)12"E » B33 T A5 g (.1

be the clement of the arc length of 2. It is convenient at this point to

define the following additional quantities: The mass density p=p{f,t) of

the curve £; the contact force* n =§(£,t) and the contact director forces

et =T9(F,t), cach a 3—diﬁen51onal vector field in the present configuration;

the assigned force f= f(g,t) and the assigned director forces %a =gu(ﬁ,t),

cach a 3-dimensional vector ficld and each per unit mass of the curve & the

intrinsic (curve) director forces Ea==ka(g,t) per unit length of ¢ which make

no contribution to the supply of moment of momentum; the inertia coefficicents

Yu =,”(F) and yuB =ya8(g), with yaB being components of a symmetric tensor,

which are independent ot time; the specific internal ecnergy ¢ =¢(f,t); the

specific heat supply r=r(f,t) per unit time; and the heat flux h=h(f,t)}

along ¢, in the direction of increasing ¢, per unit time. ‘The assigned ficld

f represents the combined effect of (i) the stress vector on the lateral

surface (2.26) of the rod-like body denoted by fc‘ and (ii) an integrated

contribution arising from the 3-dimensional body force denoted by fh' c.g. .,

that due to gravity. A parallel statement holds for the assigned ficlds g“.

Similarly, the assigned heat supply r represents the combined effect of

(1) heat supply entering the lateral surface (2.26) of the rod-like hody from

the surrounding environment, denoted by L and (ii) an integrated contribution

* . . . i1
The notations for the contact force n, the contact director forces m and the

curve director forces k@ differ from those in Green and Laws {1906), Green,
Naghdi and Wenner (1977a,b), Naghdi (1979a,b) and most of the previous papers
on the subject. In fact, the vector fields Q,@“,E“ of Part B of this paper
correspond, respectively, to g,p“.ga of Green, Naghdi and Wenner (1971a,b).
amd most of the previous papers on the subject.
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arising trom the 3-dimensional heat supply denoted hy Ty Thus, we may write

f=f +f , 2% = NN , r=71 +r . {9.15%)
- - o ~C b C

We assume that the Kinetic cnergy of a Cosserat curve R per unit

length of the curve 2 in the present configuration is given by

=1 . ?0' - '(.18 . .
LA A S A Y N
We further define the momentum corresponding to the velocity v and the
director momentum corresponding to the director velocities w, by
3K o1 oK o af ]
RaAAI —2 = / ). 15
sy - Pvryw ), g = ply vy W) (9.15)
~ ~Q
per unit length of 2. Also, the physical dimensions of p,n,f uarc
. -1
phys. dim. p = [ML ']
(9.16)
. -2 . -2
phys. dim. n = [MLT 7] , phys. dim. £ = [LT 7]
where as in section 3 the symbols [L}, [M] and [T] stand for the physical
dimensions of length, wass and time. The dimensions of the vector fields
a Qo o . . . .
m~,%" and k7 depend upon the physical dimensions of du' llere we choose du
to have the dimension of length. Then, ma,Qa will have the same physical
dimensions as n,f in (9.16) while k* will have the physical dimension of
-2.-2 i )
ML T 7.
Using the above definitions of the various field quantities and th
notation
&2
(Fee, 0l = e, 0) - f(F 0, (0.1
1 -

with reterence to the present configuration the conscervation laws for a

*
Cosserat curve dare

&

he conscrvation laws (9.018) correspond to Egs. (6.10) in the paper of
treen, Naphdi and Wenner (1974b).
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A ——r 1 e .= - - - - . ‘

d 52 b2
It fglp(y vy w ,ds = f p fds +[n]{] ,
£, _ €,
_dgit_ f.»"w(Y“V*)’uBWB)dS - fgz(pgo‘- (ag5) kHds+ [m7].° (9.18)
"l h b ) ) b RS |
a2 a aB
dt jglulfxll*y (Txwy +d X V) +dy Xy Twglds

£ £
frzﬂ(rxf+d xMyds + [rxn+d xn”)
| ~ ~ ~ ~ ~ - ~(

The tirst of (9.18) is a statement of the conservation of mass, the sccond
is the conservation of linear momentum, the third that of the director
momentum and the fourth is the conservation of moment of momentum. We
also record the law of conservation of energy in the form

£, £,

d 3
TS Ig ple +k)ds = f{]D(I'*f-v+2 - w )d>+ln'v+m(x-!va—h];]” . (9. 19)

The basic structure of (9.18)1’2 and (9.19) are analogous to the cor-
responding conservation laws of the classical 3-dimensional
theory. The structure of (9.18)3 and (9.18)4 are less obvious, but o
motivation for their forms is provided by a derivation of the bhasic ficld
cquations for rod-like bodles obtained from the 3-dimensional cqua-

*
tions of continuum mechanics in which the position vector roin 3-space is
approximated by an expression of the form {2.30). It should be noted that
the conservation laws (9.18) and (9.19) are consistent with the
invariance conditions under superposed rigid body motions, which ordinarily
have wide acceptance in continuum mechanics. Moreover, the conservation laws

IB)I, (9.18), and (9.18)4 are equivalent to, and can he derived trom the

conservation of energy (9.19) and the invariance conditions under superposed

D

ke
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rigid body motions. The conservation law (9.18)3 for the dircector momentum

must be postulated separately.
Returning to the conservation laws, after making suitable continuity

assumptions, by usual procedures from (9.18) and (919 follow the

1,2,3,4
local freld equations
', . v
= = 2 : « = = 9,2
X o= A(8) 0(833) Or pagz*pag * gF o, (9.20)
an . o
iad = 9.2
5¢ + Af Alv+y ya) s (9.21)
am o aB”
5e t M = K a0+ y ) (9.22)
ad
fz*"*‘lax'ia*a;c“xﬁfa=0 , (9.23)
and
AT 22—A5+P=0 s (V.24
where
av o o Swa
X):g.3€+5 .Y(X+T '—da?. (9.25)

1s the mechanical power.

u.3 llierarchical theories of Cosserat curves

Although the theory outlined in subsection 9.2 is sufficiently gencral
for many applications, on occasion it becomes necessary to consider a more
genceral theory ot (Cosserat curves. Therefore, we now bricfly discuss the
Kinematics and the balance laws of Cosserat curves QK having L. (2 2) directors
attached to every point of a material line J, the number I being given by

LI I I




Thus, instead of (9.2)l 5r W specify a motion offpF hy

r=r{,t)y , d = d et (N=1,2,...,K) (1.20)
-~ ~(110,2. . .U.N ~CXIO.,). . .U,N

“

where the vector functions d are assumed to he symmetric in the

~0 GOy
indices Gy Oty The velocity vector is still given by (5).4)l but cor-
responding to (9.4), we now define the director velocities
:‘i
Yo o oy, da o1 i ’ (.27
TT1IT2TON 127N "
I 3
wWe recall that for K=1 GRI = R}, the kinetical quantitics and the assigned
ticlds introduced in subsection 9.2 consist of n‘ku’mw and f,Qu. Reeping this
in mind, for a body fRK we admit the more general kinctical quantitices and
assigned fields
S XRRLe Y g0y Uy
n, k , M ,
oo a (9. 28)
%90
£, N
and corresponding to (9.14) and (9.15]1 2 write the more general cxpressions
for khinetic energy of !RK and associated momentum and dircctor momenta,
namely
1 K Qg0 - e e Oy
o =hplvev+2 Ty VW o "
T 7 N=l S A -
K al...aNBI...BM
+ b y W A " | -
N=1,M=1 | N | M
(9.2
K .
LS plv+ & yO‘1 an ]
M N R *
v N=1 Ay
ok I" S R R Y §
W rry vrey {«}l. BM ! '
G0N




i CETRRRLN
cach per unit length of the curve 2. The 1nertia coefticients v "\.
e ean, P00 UB IS )
1 N By R L 1N , .
y tn (9.29) are functions of £ only, y are svmmetric
(e SN B BB
. _ N PP By By By
with respect to indices RN N =y and are

, also symmetric with respect to Gyt ay and 8167...8 In the special case

M

of K=1 (_‘Rl:_Rl . L= 2, we may use the notutions

Y. 30
o a8 (9.30)

For a detailed statement of conservation laws appropriate for Cosserat

Crrves iRl\ we refer the reader to Naghdi (1979h, sSec. 2), but indicate below

the structure of the corresponding local field equations.  Thus, for the

purcly mechanical theory ot Cosserat curves .‘RK, the local ficld cquuations
aro:
—f:‘tl- -a\; ’ .
Y T=0 (N=1,..00.2K , A =00, h =) s pane
n .
— +3f = 0
AL
{ ‘ Gy I
)mll R 51 y ( a v
ot 4 .
. 1 N
’ oo+ MQ Voo (N=1, I N
\ 38 — R
K ad
\ ‘xl HN ‘ll-. (1\ L) r\
Q. on+ v {d x k Y oomgETomm \ oo i
’ N=L TN :
where !
' Y, SO0 ) IS RS T, 1
. 172 N 12 N 12 N
t + t \ ¥ = g + oy N (Y, 00
b ¢ b I\
i
i )
i }
[T




i
\ tx [ S
N .
t = t-v 1_\'1 W o (N-1,...,K}) :
N=1 Y :
(9. 53) f
i { Is ¥ / !
Ll 1\ Ll 1\ \L] ,U.N. l} il th, 1 v E
4 = X -y V- Y YJH i (N=1, N) 3
M= SN l’
Also, tor Cosserat curves £RK, the expression for mechanical power cor-
t
responding to (9.26) Qs
: K | N ( Z)W(
A " -~l...&1N R ,ll..‘,iN —»ll...xlN ]
Poenos - o+ 1Kk " + o e . (9. 51)
13 . e (. . af
N= ] N N=1
The general development for Cosserat curves '(Rl\' outlined above is i

contained 1n oa paper by Naghdi (1979, Sec. 2).  When K=1, the results in

subscction 9.3 reduce to those of subscction 9.2 for a Cosserat curve R,
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1o, Elastic rods

Within the scope of the theory of a Cosserat curve R outlined in
sevtion Y, we discuss briefly the constitutive cquations for clastic
rond i the presence of tfinite deformation.  As in section }, we again
suppuse the existence of a strain energy or stored cnerygy per unit miss

o L0t such that v s cquad to the wechunical power Vodetined by

P 5 . (W

In the development of nonloncar contitutive vquations for clastig
rods, we assume that the strain energs densite ooat cach material pornt

of Rund for all t is speciticd by a resporse function which depends on

vod in (9.2) and their partial derivatives with respect to 700 But since

L
the response frnction must remain unaltered under superposed rigid body 1
tran dlational displacement, the dependence on v omust be excloded. Thos,

thie vonstrtutive assumption for the strain cnergy density con be written

]
‘ E / \
g o= u(rd ,d N, (1o, 20
. NS |
whore o ~uperposed prire stands for
(T e/ , IR 3
- . . . . 1 ' p
aund weo aloo make sitmilar constitutive assuuptions for o b omon (900 i
1
. . . !
I'n the-o constitutive equations, which represent the mechanical roo oo |
ot the redinm, the dependence of the response functions on the Lol
coometrocal properties of a reterence state and material rnhoroveno o
. 1
coandreated through the argument X ]
Voceneral development ol constotative theory of elact oo voads bl :
k
1




on the assumption ot the type (10.2) is contained in the paper of Green,

Naghdi und Wenner (1974b).  In the rest of this scetion, we limit the
discussion to an clastic rod which is homogeneous in its reference con-

tiouration and supposce also that the dependence of the response functions

on the properties of the reference state occurs throueh the values of the
Minematical variahles in the reference state.  Then, in place of (lo.ly,

we have

/ / ! /
o= r',d ,d’" ;R D 1o,
% Q)(‘ T Rbete TR ,L’[.‘l) » { )

: o . - oo . . .
with stmilar assumptions for n,k7,m . After substituting (10.d) into

(ha b, by usual techniques we obtain the following torms for the

constitutive equations:

N o
i o dt ‘L .
no= X S , k7T o= A 7’2— R L s (e
. o ~ ad .
ir ~ 1 od
~ 8 4
along with the restriction
fﬁ,wl; i "’ir‘
: ; g
d,o= 78+ (d7ed™y =2 = o, (oo
~1 l\'}d. (-‘W. = /l '
~1 ad
-4
which 1s obtained from the conservation of moment o o crtum and which

restricts the response function s

he do net discuss here the reduced forms of the ahove constitutive
cquations resulting trom invariance requirements undor superposed rigid
body motyons, but for such reduction refer the reader to Green, Naghdi and
Wenner (1974 )0 Just as with the equations of motion, it s necessary in
applications to specitic problems to obtain alternative forms of the above
constitutive cquations or their reduced forms in terms of tensor component .
Sach component forms may be expressoed with vespect to bases a., or d |, or

! !

correspending bases in the reference confignration.  Redaced forms ot

f1a o are discussed in Green et o al. (1970h, Sec. ).
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Il. Identification of the assigned fields and the inertia cocefficicents

The local field equations in the mechanical theory of a Cosserat curve
R huve the same forms as those that can be derived from the 3-dimensional
tield cquations (2.9)1 >3 by sultable integration over the cross-scctional
» <
- . . 1 2 L .
arca of the rod-like body with respect to 07 and 87 [recall the definition of
a rod-like body at the end of section 2] and in terms of certain definitions
tor integrated mass density and resultants of stress (for details, sce Green,
Naphdi and Wenner 1974a).  Similarly, the cnergy equation (9.21) huas the
same form as that which can be derived tfrom the energy equation in the 3-
dimensional theory by suitable integration over the cross-scction arca of
. . 1 2 . . .
the rod-like body with respect to 8 and 07 and in terms of certain definitions
for integrated internal energy density and heat flux in the 3-dimensional
theory (see Green and Naghdi 1970).  To elaborate further, we confine atten-

tion to the purely mechanical theory and recall the definitions

T * 9 +* * 1
A= pai, = [ aTdetae? L T =0Tyt (1.1
33
A
* 2 * . 2
= [ etaetae? , a™ = [ 3 Te%Paelae” (11.2)
A A

and the cxpressions

* % ol 2 R 3 . N
e = [ aelan® e [ qaet ot by et (o
- A ~ A A - ~ h

1.2

* 2 2 N N
st = f*<>“‘draldo‘+f o e (1t <Al - anl (T (hrenh
A aA ) ’ ’ ‘

where ' which occur in (11.1)-(11.4) are defined in scction 2 [fol-

fowing (2.9)}, the line integrals are taken along the curve f = const. on
. . e a NN . .
the material surface (2.26), A=A+ g and A =24 g, * gy I8 wovector tanpential

N

* ki'l * ¥
to the surtace (2.20) so that d ey =) Vw +v_ =0,

-

It we now adopt the approximation {2305, then there is o 1-1

O,

(b0




correspondence between the 1-dimensional field equations that follow from
the conservation laws of a Cosserat curve and those that can be derived
trom the 3-dimensional equations provided we identify r and the director gu
in (2.530) with (9.2 ) and (9.2)2, respectively, and adopt the definitions
(LL.1y-¢11.9), as well as the definitions of the resultants mentioned above.
A similar 1-1 correspondence can be shown to hold between the 1-dimensional
cnergy cquation in the theory of a Cosserat curve and an integrated cnergy
cquation derived from the 3-dimensional energy equation.

The various quantities in (9.13) are free to be specified in a manner
which depends on the particular application in mind. Also, we remark that in
the context ot the theory of a Cosserat curve, the inertia coefficients

voufs

. . . . . o
Vo,V and the mass density p require constitutive equations. Indeed, FC,Q

- L . e . .
and Foe ds well as fh’Qh and T, can be identified with corresponding cexpres-
sions in a derivation from the 3-dimensional equations indicated above (for
. , . : . . a ab
details, sce Naghdi 1979a). Likewise, p and the cocfficients y ,y may be
identificd with casily accessible results from the 3-dimensional theory.

In what follows, we assume that the above identifications have been

vug,fb,Qa are known or specified. The

R o -
knowledge of fC,QC depends on the nature of the boundary conditions on the

L o
made and that the quantities p,y o ,)
lateral surface of the particular rod-like body under consideration: they
may be specified as known quantities on the surface (2.26) or they are

unknown and must be determined as part of the solution of the problem.
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12, Additional remarks on rods

Topics corresponding to those in  Sccs. 6 and 7 have so fur reccived
less attention in the case of rods and consequently the discussions that follow
arc somewhat brief. We first consider a class of constraints, apply the results
to an incompressible Cosserat curve and then go on to briefly comment on some
recent researches which bear on various aspects of elastic rods.

Consider a class of constraints which are lincar rclations between the
khinematic variables

v, w
- B TE PR

- o) . )
» Yu S (N=1,2,...,K) . (2.1

N 1 N

Similar to the development in Sec. 6 for shells, we consider (O+])

o
constraint equations of the form'
K Mula oea

AM~ vl + T B 2 N. W
- ~ Nol™ ~0L 0, Oy
K My a,...o
+ 3 C 12 N-wo’w o S0 M=o,12,00,0), (12.2)
N=1" ~0 0y Oy ~
Malu,...aN Ma]uj...a ,
where ﬁ ,g - ,g - are vector functions of gi’di only and do

not depend explicitly on the variables (12.1). We assume that cach of the
alaz...uN ma]az...uN

functions n,k

are determined to within an additive

constraint response so that

(12.3)
Lypthy e . n (L 0 Oy A0, 0yQty. . a0 B T N RERL
N b N 12 N-+k b N , m = m +m ,
whoero
~ ~ . O 0l - o0
R R R VI e AN
n, Kk , m
are specitied by consitutive equations and
[ DN JR (o s DR
S R —11720 0N
, k N , m ) (12.1)

which represent the response due to constraints are arbitrary functions of
The development between (12.2)-(12.60) is stmilar to that tor mechanical
constraints an the 3-dimensional theory,

[T




5,0 and are workless. Thus, recalling the cxpression (9.34), we sct

- B . K—f”"'uN
nev’'+ K "W, Lt ey = 0 (2.
ST N=L TLTTTN N=LT R T

tor all values of the variables (12.1) subject to the constraint con-

ditions (12.2). It then follows that

~ Q o .Q Q Mu ...q
n=- 1 AMpM , k ! N B l Py
M=o ~ M=1" ’ o)
Gy g *Mul...aN
m =- 2 C Py o
B M=1~

where Py = pM({,t) arc arbitrary functions which play the role of

Lagrange multiplicers.

We consider now an incompressible Cosserat curve R with two directors
within the scope of the above constrained theory. As in the case of an
incompressible shell-like body discussed in Scc. 6, the conditions
representing approximately the (3-dimensional) incompressibility condition
(2.10) may be derived with the use of approximation (2.27) for N=1 given
by (2.30). Under this approximation (2.30), the basc vectors are given by
g =d_, ng:§3"0a§é» where aq is the tangent vector to the curve 0" =0

20t L

and a superposed prime is defined by (10.3). Then, from the incompressibility

condition (2.10), we obtain an approximate expression as a linear function
1 p

I B .
of 57 in the form

ij« . o _d__ / _ y -
g [4dyazl+ 07 g7 [dydyd il =0, (2.7

or cquivalently as

3.0 o N s B, ooy a3,
R L R IR RS

3
+ O d 'w(;=” , (1.2.8)




and (9.7).

where in (12.7) and (12.8) use is made of the notation (9.0)l 5

We now generate three conditions representing incompressibility: One of
. . . . . P2
these is obtained from integration of (12.8) with respect to 6 ,07 over the

cross-section of the rod-like body and the other two arc obtainced by first

multiplying (12.8) by GA (A=1,2) and then integrating the resulting cqua-

. : 12 . .
tion with respect to 87,07 over the cross-section of the rod-like body.

These three conditions can bhe written as

3 , ¢ ; 3 Q e} 3 3
ST e e g AT e

RIS A 1N 3.« 3 7 3 _
R e LT R T O R L T L A AR

where

, , 2 ’ 2
s fantant = e%aetae? L ™ o [ e%Pao0 aw
A

A A
For an incompressible Cosserat curve under discussion, from (12.2) the

constraint conditions are

PR A wé

0 (M=0,1,2)

and the constrained response obtained from (12.6) has the form
— 2
n = - (pvo +plA] + p,)ik )y
@ . -poBoa'*PlBla'*P BZa '

la 20
+p,)C )y

—
m

=- (poCoOl +pyC

1

where p WPy, are the Lagrange multiplicers. Guided by the three conditions
O -

. M M
(12.9) and (12.10} for x=1,2, we select the vector-valued functions AR '

(M(

in (1212 and (12.13) to have the special values

(2.,

(12.10)

(1.2.11)




A < coeff. of v/ in (12.9) and (12.10)
Mo = coeff. of wu in (12.9) and (12.10) ) (M=o0,1,2) . (12.11)
M coeff. of w(: in (12.9) and (12.10)

Then, it follows from (12.13) and (12.4) that the expressions for the

constraint response are given by

n=-pd’ ,
~ o~
Ea:_p da_})g[(d’.d3)da_(d .d(l)dS] s (12.15)
< o~ 1'°2R < 72 ~8 ~ 7~
—Q 0,3
=t

. o a
where the arbitrary coefficients PO,P1 are relatced to the Lagrange

multiplicrs by

_ 0 0 o _ . ofl ,
Po T Y P * Y Py » PP =Y Po*Y g (12.10)

The applicability of the theory of Cosserat curves is not limited to
only clastic rods but in fact can be applied also to problems of fluid
jets.  These developments, which pertain to both inviscid and viscous jets,

have been discussed in the papers of Green and Laws (1968), Green (1975,

1970) and Naghdi (1979b).
A constrained theory of a Cosserat curve with two directors is dis- |
cussed by Green and Laws (1973) and includes as a special case results cor-
vesponding to those of the Bernoulli-Euler beam theory. The theory of small
deformation superposcd on a large deformation of an elastic Cosscrat curvve,
toecether with a discussion of stability problems of rods, is given by Green,
Knops and Laws (1968} and some simpler problems in the context of the nonlincar

theory ot rods are discussed by Erichsen (1970),

The development of the theory of Cosserat curves in Sec. 9 ts carried

out within the scope of the purely mechanical theory, In carlicer work on

7.
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the thermo-mechanical theory of rods by direct approach (Green and Naghdi
1970}, only one temperature field was admitted and this allowed for the
characterization of the temperature changes along some reference curve
such as the central line of a rod in the (3-dimensional) rod-1like hody,
but not for temperature changes in the cross-section of the rod. The
latter effect has been incorporated recently by Green and Naghdi (1979b)
into the thermo-mechanical theory of Cosserat curves, together with L

appropriate thermodynamical restrictions arising from the second law of

thermodynamics for rods.




13. The basic equations for rods in direct notation

In parallel to the development of section 8 for shells, for some
purposes it is convenient to have available the basic equations of a Cosscrat
curve in a direct (coordinate-free) notation and this is the main purposc of
the present section. Just as in the case of shells, we shall sce thut the basic
equations for rods in coordinate-free notation are very similar to thosc of
the corresponding equations in the 3-dimensional theory and thus may be
more suitable in the discussion of general theorems or in the developments
which parallel those in the 3-dimensional theory.

We introduce the notations grad and Grad to denote the right spatial
and material gradient operators, respectively, with respect to the position
on the curve ¢ in the current configuration and on the curve .fR in the
reference configuration. The corresponding divergence operators will be
denoted by div and Div, respectively. In particular, for a vector-valucd

*
function V(£,t), we write

grad V = v/@d> , divv=v/.d
(13.1)
PP . oyl 3
Grad V= V@D , DivVvVv=V D s
where a prime denotes partial differ.tiation with respect to £ and the
symhol @ denotes tensor product. Also, the spatial curve gradient operator
is defined by
gradCV = V'33 s (13.2)

for all scalar-valued functions V(£,t).

As in section 8, we introduce a measure of deformation by the tensor 1,

*
it is c¢lear that the notations grad, Grad, div and Div in this section
stand for operators with respect to position on the curve ¢ and need not
be confused with the similar notations in section 8 for surface operators.

73.




name ly

"
=9
®
=2

[t}

o
Grad r+d ®D" |
~ 0 -
and in view of the notations (9.6) and (9.10) we observe that

b, = d, = a , ¥ho=4d
~ 5 -3 .3 ~0 -~

Irom the definition of the determinant of a second order tensor usced in

section 8 [following (8.4)] and the conditions (9.2),5 and (9.8)3, we ohtain

det ¥ = 1, dyds1/0, 0,051 > 0

.
~ PV

The tensor F, a linear operator on vectors in 3-space, is nonsingular; and

. - . - . . -1 -
there exists, therefore, the inverse deformation gradient F - defined by

li'] = l)jébdl

he 1nverse operator F transforms vectors in the present contfiguration

into vectors in the reference configuration, i.e.,

e =
~1 ~1
and 1t tollows that
-1 ol 1 i
Vlesr s =d@d = pedt

where bois the unit tensor in 3-space.  We also introduce here the gradient

ot the directors by

G = Ggrad d = d/'gl)3
¢ a .

B3

Recalling the definitions (U.J)l , for the velocity and the director

. <

(13.3)

(13,1

(13.0)

(13,9




0P P R I o M ) I AT R 2

E { velocities, as well as (9.5), we have
!
| Fo=d.sen = d.®0°+d &% = v">2‘l)3+w st
‘ - S5 BRI L3 pls T - - T
E {(13.10)
{ " . 7 & 3 / (L
! G =d’8Dp° = w/®kD
i I 01 ppe ~ ~0 ~
| Also
-1 3 a
FFE o= dS‘Xd +d ®d" = grad vew ®d ,
(43.11)
) (;ur" = w/®d” = grad w

The formulas (13.3)-(13.10) represent the main kinematical results in
terms of the gradient tensors F’ch and their rates. We now turn to hinctical
quantitics and note that the contact force n and the contuact dircector force

il . . . 3 . .
m, as linear tfunctions of d7, can be expressed in the tform

NS - al MAd? (13.12)

1
= /2
no=dgg

with the second order tensors N,MOl defined by

1. 5
d?. N = n®d, = n'd.®d.
~ 3 ~1 3

33 -
(13.13)
. .
az. M = ll]uxd., = mmdﬁ%d, .
! 33 . - ~3 ~1 3
whero
n =n-d s n® =g’ (15.1.0)

Also, it is convenient to introduce a tensor K through

- o L% a
) Mg K d
,‘ (1515

K= k*®d = k'"d. &d
- ~ 0L 1 Ee}

! whoere




Before proceeding turther, we recall the divergence of a sccond order
tensor tield T ois detined by
ceodiv T = div(Tt ¢)
tor all constant vector ¢, where superscript T denotes transposce.  Applving

the above definition to the tensor N In (13.12)1, and recalling (9.12) we

[ [}

obtuin

N ,,’
div (N'e)=div [(n-c¢) d_/d?,
(SR ¢ T ] 59

X - an
l/‘ ab -~ ¢
B

= |{n+c)d./d
- D

35
with a similar result for the tensor M . Thus, we have

. 0t
an am

div N = - | div M = =T
¢ G C- B

With the nse of (13.1), the kinematical results (13.8)-(13.49), and (15.17)

trom the conservation laws (9.18) follow the local ficld cquations
p+yp divv =0
C~

§ o
iv N+ = plv ’
dlvcx pf ‘(N+) WG) s

. 1 5 o o’ Q
dwCM ol kT = ply vy

B

‘;’,(-\) '

[N+ K+ M“((;“l:_] )= N K+ M”((:ﬂl"")'l'

As in ocorresponding results in scction 8, the last statement in (13.18) is

<tanlar to the symmetry of the stress tensor in the 3-dimensional theorv.  In
. ;o .

particular, it may be observed that agxn, dxk and d“ xm o oare, respectively,

| ‘ ! T I

’ ; T DTV S . o
I L BRI R L N R R R AR N U B

the axvial vectors of :l;,;!\é N
AR

(13.16)

(I15.18)
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Furthermore, in terms of the Kinetical quantitics NJMT,K in (13.12) and

\13.13)l and the rate quantities (13.10)1 J» the mechanical power hecomes
- Y‘_ . -.,1. ) . o - . '
doaP = tri [F(N+K) +9;M | (F l)|} ) N

With reference to constitutive equations for clastic rods, instcead of
the kinematic variables used in section 10, we now cmploy the variables
(13.3) and (13.9). Thus, corresponding to the constitutive assumption

fIe i, we now write

HIE U)(E’gu Gy thaoo)

T Ria
whoere

Grad 1 = n/@&n>

oo 15,2
R o N ’ (rs.-h

(X

atong with similar assumptions tor N, K, M Then, with the usce of (1o.1), (13,19

and (13,20), by usual technigque  we obtain the following alternative forms

ot the constitutive cquations:
e T ~ 3 3
S SR S CLE VA (Dﬁﬁbd_’) . (15..220)

the tirst of which can be re~olved into

W] Ny R
NS fhhedy K= = (b ®d) (F3.05)
N N g ~0Y
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c ol e body gnoa reference configuration showing the line of
contrcnt it position vector R (referrved to rectangular Cartesian
o the end normal cross-soctions -’,:e‘jl‘ »’,:FS. Also
o oot principal normal i\l= the unit binormal L\g and
cootor g to the curve with position vector R.
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